基于細(xì)胞色素c和納米發(fā)光材料的生物傳感新方法研究
[Abstract]:In recent years, biosensors have been widely used in clinical detection, drug screening and medical research because of their high accuracy, fast analysis speed, low cost and good selection. Optical detection technology has the advantages of low background noise, simple operation and high sensitivity, and has been widely concerned by researchers in the field of biosensors. Based on the advantages of cytochrome c and Nano-luminescent materials in the fields of biosensor and biochemical analysis, this paper is devoted to the research hotspot of biosensor analysis, and has established a variety of new biosensor methods for diseases. Compared with the traditional methods, the method proposed in this paper is simple, sensitive and low-cost. At the same time, it preliminarily demonstrates the detection ability in some practical applications. The specific contents are as follows: kinase-catalyzed protein phosphorylation process has many advantages. In Chapter 2, a novel fluorescent peptide/cytochrome C sensing platform was constructed to detect the activity and inhibition of casein kinase II (CK2) based on the inhibition of phosphopeptides on the digestion of carboxypeptidase Y and the strong quenching ability of cytochrome c. However, phosphorylated amino acids can hinder the hydrolysis of carboxypeptidase and lead to the adsorption of phosphorylated peptides on the surface of cytochrome c. The method can be used to detect the activity of cyclin-dependent kinase (CDK1). In complex environment, the method also shows good analytical performance. The results of recovery in cell lysate samples are satisfactory. In addition, our method can be used to determine the activity of cyclin-dependent kinase (CDK1). In Chapter 3, based on the strong specific interaction between aptamers and lysozyme, a novel aptamer fluorescence sensor was successfully constructed for the label-free detection of lysozyme content. We first synthesized aptamer-functionalized cadmium telluride quantum dots (DNA-CdTe QDs) directly by one-step method and used them as fluorescent probes. Under the condition of electrostatic adsorption, DNA-CdTe QDs can bind to cytochrome c quickly, and the fluorescence of QDs is quenched. Because of the electron transfer between DNA-CdTe QDs and heme cofactors in cytochrome c, the fluorescence of QDs is colored. When lysozyme is added to the system, the QDs can be separated from cytochrome C and the fluorescence of QDs can be restored due to the specific binding of the aptamers on the surface of QDs to lysozyme. Quantitative detection. The method does not require any fluorescent labeling. The whole experimental procedure is simple and inexpensive, and the method has good selectivity and sensitivity. In addition, by substituting aptamer sequences, the method can be extended to the detection of other proteins. p-secretase (BACE1) in neurotoxic amyloid protein (Abet) In Chapter 4, we propose a strategy for in situ synthesis of quantum dots based on enzymatic hydrolysates for label-free fluorescence detection of BACE1 activity and inhibition. In the presence of BACE1, the polypeptide probe is hydrolyzed into two single thiol sequences, which can be used as an effective ligand or template to synthesize CdS quantum dots and produce a strong fluorescence signal. Conversely, when BACE1 is not present or inhibitors are present, the double thiol groups in the substrate peptides are associated with CdS ions. Compared with the previously reported FRET-based methods, this method is simple to operate and has low analytical cost. At the same time, it does not require any fluorescent labels and complex peptide probes to design diabetes mellitus. In Chapter 5, we developed a novel upconversion composed of DNA-AgNPs and NaYF4:Yb/Tm@NaYF4 core-shell upconversion nanoparticles (UCNPs). The nanocomposite is based on the principle of luminescent energy transfer (LRET) between exposed UCNPs and DNA-AgNPs. In the study, we linked a adenine-rich sequence at one end of the cytosine-rich DNA sequence and used this DNA as a template to synthesize silver nanoparticles in one step. The LRET process mainly relies on the coordination between the phosphoric acid skeleton on DNA-AgNPs and the lanthanide metals exposed on the surface of UNCPs to quench the up-conversion fluorescence of the donor. Based on the principle that GOx can convert glucose to hydrogen peroxide, our DNA-AgNPs/UCNP complex can be further used to detect glucose in blood samples. The detection limits of hydrogen peroxide and glucose were 1.08 and 1.41 mu M, respectively. The detection of alkaline phosphatase (ALP) activity was very important for clinical diagnosis and evaluation of related diseases. In Chapter 6, DNA was synthesized as template. A fluorescence sensor was developed to detect the activity of ALP using silver nanoclusters as fluorescent indicators. In this experiment, we designed two DNA strands, in which 5'-phosphorylated G-DNA was used as the hydrolysis substrate of ALP and A-DNA contained a model of silver nanoclusters synthesis. Lambda exo can rapidly degrade phosphorylated G-DNA into mononucleotides, and the fluorescence signal of silver nanoclusters is very weak due to the lack of close proximity of G-rich sequences. When ALP is introduced into the system, ALP can dephosphorylate phosphorylated G-DNA into hydroxyl groups, thus effectively preventing the digestion of lambda exo. The fluorescence intensity of silver nanoclusters is greatly enhanced by the close proximity of G-rich sequences because the template chains of silver clusters can be complemented by the hybridization of G-DNA sequences. Because the fluorescence intensity of silver clusters depends on the concentration of ALP, the detection of ALP can be realized by detecting the fluorescence intensity of silver clusters. The screening of ALP inhibitors also has good analytical performance in complex systems.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP212.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 周立新;納米發(fā)光材料及器件的研究發(fā)展[J];電子器件;2001年04期
相關(guān)會(huì)議論文 前7條
1 鄭海榮;董軍;張正龍;高當(dāng)麗;高偉;閻曉慶;李嬌;孫瑜;;局域及外圍環(huán)境在稀土摻雜納米發(fā)光材料研究中的作用[A];第七屆全國(guó)稀土發(fā)光材料學(xué)術(shù)研討會(huì)會(huì)議論文摘要集[C];2011年
2 王世敏;方章建;辛麟;;微乳液法制備有機(jī)納米發(fā)光材料及其性能研究[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)有機(jī)固體材料分會(huì)場(chǎng)論文集[C];2008年
3 肖清波;朱浩淼;陳學(xué)元;;稀土離子摻雜In_2O_3納米發(fā)光材料及其光譜學(xué)[A];第八屆博士生學(xué)術(shù)年會(huì)論文摘要集[C];2010年
4 任山令;張家驊;候尚公;鄂樹(shù)林;呂少哲;宋宏偉;黃世華;;一種新型紫外劑量探測(cè)材料及其發(fā)光性質(zhì)的研究[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
5 李文宇;劉應(yīng)亮;艾鵬飛;;新型具有多種形貌的Y_2O_2S:Eu~(3+)納米發(fā)光材料的合成與表征[A];第11屆全國(guó)發(fā)光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
6 ;Field Emission Property of Carbon-Doped TiO_2 Nanotube Arrays with Controllable Doping Content of Carbon[A];中國(guó)真空學(xué)會(huì)2012學(xué)術(shù)年會(huì)論文摘要集[C];2012年
7 毛艷麗;許青海;;Bi3+摻雜Gd2O3:Er納米晶的發(fā)光增強(qiáng)研究[A];第十五屆全國(guó)光散射學(xué)術(shù)會(huì)議論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 唐鹿;稀土離子摻雜YVO_4納米發(fā)光材料的制備及性能研究[D];南昌大學(xué);2015年
2 吳雙;基于細(xì)胞色素c和納米發(fā)光材料的生物傳感新方法研究[D];湖南大學(xué);2016年
3 楊宇明;稀土摻雜納米發(fā)光材料的制備及發(fā)光性能的研究[D];吉林大學(xué);2009年
4 鄒文國(guó);硼酸鹽類納米發(fā)光材料的制備與表[D];山東大學(xué);2005年
5 劉寧;表面修飾對(duì)稀土摻雜納米發(fā)光材料發(fā)光性質(zhì)影響的研究[D];吉林大學(xué);2011年
6 于立新;稀土摻雜一維納米發(fā)光材料的合成和發(fā)光性質(zhì)[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2005年
7 林靖;稀土/過(guò)渡金屬摻雜納米發(fā)光材料的合成及發(fā)光特性研究[D];華中師范大學(xué);2008年
8 周媛媛;鈮酸鹽納米發(fā)光材料的制備與表征[D];山東大學(xué);2008年
9 張海萍;釩酸鹽納米發(fā)光材料和鈦酸鉍系光催化薄膜的制備及性能研究[D];山東大學(xué);2007年
10 邱子鳳;稀土摻雜復(fù)合氧化物納米發(fā)光材料的制備與表征[D];山東大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李霞;稀土氟化物納米發(fā)光材料的制備及性能研究[D];長(zhǎng)春理工大學(xué);2010年
2 修志亮;磷酸鹽納米發(fā)光材料的制備與表征[D];山東大學(xué);2005年
3 毛國(guó)娟;稀土銪摻雜的納米發(fā)光材料的合成與性質(zhì)研究[D];遼寧師范大學(xué);2011年
4 李若蘭;稀土納米發(fā)光材料的制備及表面修飾的研究[D];長(zhǎng)春理工大學(xué);2009年
5 李瑋;鋯酸鹽納米發(fā)光材料的制備與表征[D];山東大學(xué);2010年
6 王樹(shù)美;錫酸鹽納米發(fā)光材料的制備與表征[D];山東大學(xué);2006年
7 白海英;稀土摻雜氧化物納米發(fā)光材料的制備與性能研究[D];長(zhǎng)春理工大學(xué);2011年
8 王佐兵;錫酸鹽納米發(fā)光材料的制備與表征[D];青島大學(xué);2011年
9 劉成露;稀土納米發(fā)光材料的熔鹽法合成及其發(fā)光性能研究[D];東北林業(yè)大學(xué);2011年
10 胡益輝;基于金屬納米發(fā)光材料的新型生物傳感器研究[D];湖南大學(xué);2013年
,本文編號(hào):2247557
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2247557.html