具柔性脊柱的四足機器人結(jié)構(gòu)優(yōu)化與控制
[Abstract]:Quadruped robot has good environmental adaptability and motion flexibility, and can be widely used in military, industrial, life and other aspects. It has become a hot issue in the field of robot research. Based on previous studies, a quadruped robot with flexible spine is designed, its dynamic model is established, and its bound gait is analyzed. The passive motion characteristics of the model are studied. The effects of the fuselage length, inertia and stiffness parameters on the motion performance and stability of the robot are studied. The structure parameters are optimized and the gait control methods are proposed. The cheetah is considered to be the fastest quadruped mammal. From the bionics point of view, the cheetah's skeleton is referred to. HUST cheetah quadruped robot is developed in this paper. According to the characteristics of the cheetah's skeleton structure, the basic configuration frame of the quadruped robot is constructed. Principal Component Analysis (PCA) is used to explore the correlation between the joints in the process of cheetah movement, coupling the related joints, reducing the number of active driving joints and optimizing the mechanical structure of the robot. On this basis, the design principle and the whole of HUST cheetah quadruped robot are proposed. A dynamic model of a quadruped robot with a flexible spine under bound gait is established by observing the kinematic characteristics of the leopard bound gait. In order to reduce the structural parameters of the model and make the model more general, the model is dimensionless. The Poincare mapping method is used to study this problem. The passive dynamics of the model is solved by Newton-Raphson method. The passive motion characteristics of the model at the fixed point are analyzed. A method for determining the stability of the fixed point is proposed. It provides a theoretical basis for the optimization and control of structural parameters. To improve the motion performance and stability of a quadruped robot with a flexible spine at a fixed point, a method of searching fixed points under the same system energy state is proposed. The influence of the length, inertia and stiffness of the robot spine on the stability of the fixed point under the same energy state is analyzed, and the leg stiffness is obtained. Degree and spinal stiffness are the key factors to determine the stability of a quadruped robot with a flexible spine, and then the length, inertia and stiffness of the quadruped robot are optimized. The stability of the robot is guaranteed and the motion performance of the robot is improved. The optimization of the parameters of the asymmetrical front and rear spines is accomplished. In addition, the comparison between the rigid spine model and the flexible spine model shows that the flexible spine can improve the motion performance of the quadruped robot. It can realize self-stable periodic motion without external drive. However, it is difficult for the robot to move steadily because of friction and external disturbance. In order to make the HUST cheetah robot move steadily in passive mode, a hierarchical control based on passive dynamics is proposed. In the high-level controller, a joint control method based on target state is proposed by using passive dynamics. In the low-level controller, a closed-loop PD torque control based on position and speed is proposed, and the effectiveness of the control algorithm is verified by simulation experiments. Besides the bound gait which is suitable for high-speed movement, the common gait of cheetah is also presented. A tort gait control method based on the spring inverted pendulum model (SLIP) is proposed for the tort gait control of the HUST cheetah robot. On the basis of the above theoretical analysis and research, a quadruped robot with a flexible spine, HUST cheetah, is developed. The gait motion and theoretical validation tests are completed, and the HUST cheetah machine is proved. The robot has high speed and stable movement ability.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 段齊駿;機器人工作空間配置的可靠性規(guī)劃[J];機械科學(xué)與技術(shù);2004年02期
2 鐘勇,朱建新;一種新的機器人工作空間求解方法[J];機床與液壓;2004年04期
3 張培艷,呂恬生,宋立博;排球機器人動作規(guī)劃方法研究[J];機床與液壓;2004年06期
4 曹毅,王樹新,李群智;基于隨機概率的機器人工作空間及其面積求解[J];制造業(yè)自動化;2005年02期
5 胡磊;劉文勇;王豫;欒勝;;骨科機器人空間設(shè)計方法研究[J];機器人;2006年04期
6 石磊;;松協(xié)調(diào)下雙臂機器人的協(xié)作工作空間計算[J];微計算機信息;2007年24期
7 許衛(wèi)斌;平雪良;應(yīng)再恩;杜永忠;李正洋;;6R型串聯(lián)機器人工作空間快速求解方法[J];機械設(shè)計;2013年06期
8 王興海,周迢;機器人工作空間的數(shù)值計算[J];機器人;1988年01期
9 郭明,周國斌;多關(guān)節(jié)機器人工作空間的分析與評價方法[J];機器人;1988年04期
10 陳國欣,李誠琚;計算機繪圖在機器人工作空間分析中的應(yīng)用[J];機器人;1988年05期
相關(guān)會議論文 前6條
1 范守文;徐禮鉅;;機器人工作空間分析的解析法[A];第十四屆全國機構(gòu)學(xué)學(xué)術(shù)研討會暨第二屆海峽兩岸機構(gòu)學(xué)學(xué)術(shù)交流會論文集[C];2004年
2 殷子強;張廣軍;袁新;趙慧慧;吳林;;人機交互式機器人弧焊再制造系統(tǒng)設(shè)計[A];第十六次全國焊接學(xué)術(shù)會議論文摘要集[C];2011年
3 范波濤;閆成新;;噴漿機器人靈巧度分析[A];面向21世紀(jì)的科技進(jìn)步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
4 海丹;劉玉鵬;鄭志強;;四輪全向機器人的設(shè)計與控制方法[A];2005中國機器人大賽論文集[C];2005年
5 高理富;宋寧;;Puma控制器改造中的控制算法探究[A];2003年中國智能自動化會議論文集(上冊)[C];2003年
6 徐曉;翟敬梅;謝存禧;;機器人柔性裝配單元的設(shè)計[A];第十屆粵港機電工程技術(shù)與應(yīng)用研討會暨梁天培教授紀(jì)念會文集[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 蔣峻;具有力感知的腹腔鏡微創(chuàng)手術(shù)從動機器人的研究[D];上海交通大學(xué);2014年
2 管小清;冗余度涂膠機器人關(guān)鍵技術(shù)研究[D];北京理工大學(xué);2015年
3 杜海艷;MRI環(huán)境下乳腺介入機器人穿刺路徑規(guī)劃研究[D];哈爾濱理工大學(xué);2015年
4 李騰飛;籠養(yǎng)蛋雞健康行為監(jiān)測機器人系統(tǒng)研究[D];中國農(nóng)業(yè)大學(xué);2016年
5 李睿;機器人柔性制造系統(tǒng)的在線測量與控制補償技術(shù)[D];天津大學(xué);2014年
6 趙燕鵬;長骨骨折精準(zhǔn)手術(shù)機器人系統(tǒng)研究[D];中國人民解放軍醫(yī)學(xué)院;2016年
7 黃彪;枇杷剪枝機器人關(guān)鍵技術(shù)的研究[D];華南理工大學(xué);2016年
8 陳健;面向動態(tài)性能的工業(yè)機器人控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
9 杜亮;六自由度工業(yè)機器人定位誤差參數(shù)辨識及補償方法的研究[D];華南理工大學(xué);2016年
10 韓金華;護(hù)士助手機器人總體方案及其關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 鄭為湊;輕工包裝機器人專用運動控制系統(tǒng)研究[D];江南大學(xué);2015年
2 齊龍;基于視覺的6自由度機器人焊接控制研究[D];燕山大學(xué);2015年
3 彭真;典型工況下四自由度高速重載機器人起動特性的研究[D];燕山大學(xué);2015年
4 趙登步;基于機器視覺的SCARA機器人快速定位控制系統(tǒng)的研究與開發(fā)[D];江南大學(xué);2015年
5 邱煥能;機器人操作臂控制驅(qū)動系統(tǒng)研究[D];華南理工大學(xué);2015年
6 王權(quán);基于大臂并聯(lián)的四自由度機器人結(jié)構(gòu)設(shè)計與研究[D];鄭州輕工業(yè)學(xué)院;2015年
7 翟美新;基于李群李代數(shù)的機器人運動特性分析與研究[D];南京理工大學(xué);2015年
8 BUI HUU TOAN;智能服務(wù)機器人控制系統(tǒng)研究與實現(xiàn)[D];南京理工大學(xué);2015年
9 高君濤;工業(yè)碼垛機器人的軌跡優(yōu)化及結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計[D];西安建筑科技大學(xué);2015年
10 姜柏森;一種變幾何桁架機器人運動學(xué)建模及軌跡規(guī)劃算法[D];上海交通大學(xué);2015年
,本文編號:2242400
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2242400.html