基于空時關(guān)系學(xué)習(xí)的運動檢測和目標跟蹤研究
[Abstract]:Intelligent city is an important strategy for a country to solve the current urban development problems, increase new economic growth points, and seize the commanding heights of future science and technology. Intelligent traffic is one of its core construction contents. Two core problems of detection and target tracking are explored technically. The research results are applied to the intelligent electronic police system of intelligent transportation, which improves the adaptability of the electronic police system to the environment. The main factors of complex scenes are analyzed. The mechanism of unfavorable effects of illumination changes, background disturbance, similar targets, camera motion and other factors on moving target detection is analyzed in depth. The problem of long-term tracking of unknown targets in complex scenes includes: object occlusion, object appearance change, object scale change and short-term disappearance of the target. In the case of target feature missing or incomplete due to the change of target appearance, the available information is analyzed and compared. A representative target tracking algorithm is proposed to deal with the change of target scale and the short-term disappearance of target. Finally, the above research results are applied to the intelligent electronic police system to solve the technical difficulties encountered in the development process. The main research results and contributions of this paper are as follows: 1. The main components of complex scenes in video object detection are analyzed, and a scale-invariant approach is proposed. Local ternary mode (SILTP) video image background modeling algorithm. According to the different effects of complex scenes on different levels of video image sequences, the background modeling algorithm is designed using three levels of information: frame level, image block level and pixel level. The algorithm combines the advantages of image frame, image block and image pixel to deal with complex scenes. At the frame level, the global gray mean is used to deal with the sudden change of scene brightness; at the image block level, the SILTP texture image is used to model the background based on the image block to quickly locate the outline of the foreground target; at the pixel level, the precise boundary of the foreground target is detected by the ViBe-like algorithm. Confronted with the difficulty of video object detection, i.e. the elimination of object self-projection, a shadow illumination model is constructed, and the types and causes of object shadows are analyzed. The weak sensitivity of illumination changes eliminates the target projection caused by indoor weak illumination; then, a hue model is constructed in HSV color space to eliminate the target projection caused by outdoor illumination by using the intrinsic characteristics of object color; finally, in order to enhance the elimination effect of target projection and improve the processing speed, the local correlation of pixel changes is used. MofV factor is designed. The performance of the algorithm is verified by the standard video set CDM'14. 3. A robust motion detection method DMSTAB is proposed in HSV color space. In HSV color space, the local intensity difference of pixels is generated by K-means clustering, and the local intensity difference of pixels is generated by spatial-temporal correlation of pixel sets. Then, the working principle of Vibe background subtraction algorithm is deeply analyzed, and a bi-correlation background model based on AdaBoost-Like method is proposed to detect moving objects quickly and accurately and eliminate moving objects effectively. Projection. The performance of this method is validated by a variety of complex scenes on the standard video set CDM'14. 4. A space-time confidence relation based moving object detection method STR is proposed. In this paper, a space-time confidence relation is proposed, and a relatively stable relation between pixels and their neighborhood pixels is defined. Then, a fast kernel density estimation method is used to model the temporal variation of spatial relationship. In addition, the corresponding weights are assigned to the model according to the dispersion of spatial relationship values. Finally, the pixels are synthesized by the probability based on weights. The algorithm is validated in typical complex scenes of standard video set CDM'14. 5. A new method LST is proposed, which combines the space-time association information of the target and its environment with the target's own characteristics to track unknown targets for a long time and stably. The algorithm consists of three functional modules: detection, tracking and learning. The detection module cascades through several classifiers, detects the target in the global scope according to the basic image features of the target itself, handles the transient disappearance and recurrence of the target, changes in target scale and environment. The tracking module uses the space-time confidence relationship between the target and its surroundings to track the target quickly through local search, deal with the occlusion of the target and the change of the target scale; the algorithm evaluates the tracking and detection effect by maintaining a set of online templates composed of positive samples in the running process. The learning module adjusts the tracking and detection results according to the evaluation results. The LST algorithm is compared with the mainstream video target tracking algorithm on several datasets which are challenging to the tracking algorithm (severe occlusion, drastic illumination changes, attitude and scale changes, non-rigid deformation, complex background, motion blur and similar targets). ST algorithm shows a good tracking effect. 6. In the face of the technical bottleneck encountered in the development of the electronic police system, the core technology of moving target detection algorithm STR and target tracking algorithm LST is applied to the intelligent electronic police system. The vehicle detection and tracking performance of the intelligent electronic police system are improved, and further acts on it. License plate recognition and vehicle violation judgment have improved the overall performance of the electronic police system.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 張濤;張桂林;;運動檢測中的背景建立和更新[J];計算機與數(shù)字工程;2007年02期
2 劉振宇;周莉;陳杰;;一種基于運動檢測的碼率控制算法[J];科學(xué)技術(shù)與工程;2010年20期
3 閆石;白振興;代忠;;對傳統(tǒng)運動檢測算法改進的研究[J];現(xiàn)代電子技術(shù);2007年06期
4 顧敏劍;;基于運動檢測的遠程圖像采集系統(tǒng)的設(shè)計與實現(xiàn)[J];計算機與數(shù)字工程;2012年08期
5 強俊;周鳴爭;;基于正交Gaussian-Hermite矩的運動檢測在去隔行中的研究[J];安徽工程大學(xué)學(xué)報;2013年02期
6 胡俊,蘇祥芳,劉立海,沈蕓,管鮑,王延平;圖像序列運動檢測算法的研究及其應(yīng)用[J];武漢大學(xué)學(xué)報(自然科學(xué)版);2000年05期
7 周西漢,劉勃,周荷琴;一種基于對稱差分和背景消減的運動檢測方法[J];計算機仿真;2005年04期
8 藍照華;傅文利;趙進創(chuàng);陳濤;;邊緣面積值絕對差數(shù)累積運動檢測算法[J];微計算機信息;2006年33期
9 張凱;;視頻運動檢測算法的研究和分析[J];遼寧工學(xué)院學(xué)報;2007年01期
10 侯葉;郭寶龍;;基于圖切割的人體運動檢測[J];光電子.激光;2007年06期
相關(guān)會議論文 前8條
1 郭銳;;運動檢測報警在監(jiān)控系統(tǒng)中的設(shè)計與實現(xiàn)[A];科學(xué)發(fā)展與社會責(zé)任(A卷)——第五屆沈陽科學(xué)學(xué)術(shù)年會文集[C];2008年
2 唐曉丹;苗振江;;視頻監(jiān)控系統(tǒng)中人的運動檢測方法研究[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年
3 李東光;殷俊;房慧敏;;基于生物復(fù)眼結(jié)構(gòu)的視覺運動檢測研究[A];2004全國光學(xué)與光電子學(xué)學(xué)術(shù)研討會、2005全國光學(xué)與光電子學(xué)學(xué)術(shù)研討會、廣西光學(xué)學(xué)會成立20周年年會論文集[C];2005年
4 傅松寅;蔣剛毅;郁梅;;一種基于像素變化檢測的自適應(yīng)實時運動檢測系統(tǒng)[A];第18屆全國多媒體學(xué)術(shù)會議(NCMT2009)、第5屆全國人機交互學(xué)術(shù)會議(CHCI2009)、第5屆全國普適計算學(xué)術(shù)會議(PCC2009)論文集[C];2009年
5 陳威宇;孟利民;;視頻圖像序列混合運動檢測方法[A];2008年中國高校通信類院系學(xué)術(shù)研討會論文集(上冊)[C];2009年
6 徐蕭蕭;陳宗海;;基于視覺信息的目標檢測與跟蹤技術(shù)現(xiàn)狀與趨勢[A];2007系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2007年
7 馬強;羅喜伶;;空基交通監(jiān)視系統(tǒng)中的運動目標檢測方法研究[A];2008第四屆中國智能交通年會論文集[C];2008年
8 辛穎;吳強;孫光民;徐穎;姚明;;智能化公交系統(tǒng)的客流跟蹤計數(shù)綜述[A];2008通信理論與技術(shù)新進展——第十三屆全國青年通信學(xué)術(shù)會議論文集(上)[C];2008年
相關(guān)博士學(xué)位論文 前4條
1 范志輝;基于空時關(guān)系學(xué)習(xí)的運動檢測和目標跟蹤研究[D];西安電子科技大學(xué);2016年
2 李宏友;基于視頻的目標檢測與跟蹤方法研究[D];重慶大學(xué);2009年
3 沈宇鍵;變參數(shù)圖像回歸處理方法的研究[D];中國科學(xué)院長春光學(xué)精密機械與物理研究所;2000年
4 康鋒;基于視覺特征的早期農(nóng)林火災(zāi)檢測方法的基礎(chǔ)研究[D];浙江大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李運崇;基于形狀識別的運動物體檢測[D];鄭州大學(xué);2015年
2 樊建霞;家庭環(huán)境下的人體跟蹤與定位[D];山東大學(xué);2015年
3 余傳桂;網(wǎng)絡(luò)化數(shù)字健身系統(tǒng)設(shè)計與實現(xiàn)[D];南昌大學(xué);2015年
4 吳衛(wèi)東;基于視覺注意機制的視頻顯著目標檢測技術(shù)研究[D];北京工業(yè)大學(xué);2015年
5 周文彬;去隔行算法的FPGA實現(xiàn)[D];西安電子科技大學(xué);2014年
6 喬鵬;基于視頻的車輛運動檢測和流量統(tǒng)計算法研究[D];國防科學(xué)技術(shù)大學(xué);2013年
7 李冰冰;面向?qū)W生人群的運動檢測算法研究及軟件開發(fā)[D];浙江工業(yè)大學(xué);2015年
8 衛(wèi)偉;基于FPGA的2D轉(zhuǎn)3D實時視頻轉(zhuǎn)換技術(shù)的研究及實現(xiàn)[D];合肥工業(yè)大學(xué);2015年
9 李飛;智能視頻監(jiān)控系統(tǒng)中運動檢測算法的研究[D];重慶大學(xué);2015年
10 白金輝;面向能量回收的MIMU人體運動檢測識別方法研究及系統(tǒng)實現(xiàn)[D];東南大學(xué);2015年
,本文編號:2221594
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2221594.html