數(shù)字濾波器參數(shù)化設(shè)計(jì)與高效實(shí)現(xiàn)研究
[Abstract]:As an interdisciplinary subject of science and engineering, digital signal processing is one of the most important cornerstones of the development of modern science and technology, and has been widely used in various fields of scientific research and production practice. Fields. Based on the state space theory of systems, there are many equivalent implementation structures for a digital filter with a given transfer function. Infinite precision design of digital filters focuses on the efficiency of finding feasible solutions and the stability of the system. Finite precision design also considers the low complexity and the limited reduction of the implementation structure. On the other hand, digital filters can be implemented in two ways, with special emphasis on the high throughput of algorithms when implemented by computer software, and with more emphasis on the high speed and low cost of synthesis results when implemented by hardware methods such as special purpose or general purpose integrated circuits. The main work and achievements are as follows: 1. Based on the JSS junction structure, the IIR number digital filter parameterization method: The cost function of designing infinite impulse response-IIR digital filter is generally used. Because the JSS structure of an analog filter contains only 2N+1 parameters for a N-order filter and has l2-scaling property, a parametric method for designing IIR filters is proposed based on the JSS structure and generalized bilinear transform. The method is complete, compact and convex, and has the property of l2-scaling. This method can design stable IIR filters more efficiently, and has better performances such as passband fluctuation, stopband attenuation, group delay and so on. 2. Based on genetic algorithm, the discrete design of lattice structure parameters: the combination of molecular injection and molecular tapping The lattice filter structure has the degree of freedom and can optimize the FWL performance such as node signal power ratio. The structure has only 2N+1 multiplier, and the parameter sensitivity is very low. It is especially suitable for the discrete design of IIR filter. In this paper, the genetic algorithm based on Gray code is used to solve the nonlinear optimization problem. The global optimization is used in the low-order filter, and the step-by-step optimization is used in the high-order filter. The contradiction between efficiency and performance in the discretization of IIR filter parameters is effectively solved, which is conducive to the practicality of IIR filter. 3. All-pass digital filter with parallel computation is used. Structure: Input balancing implements low parametric sensitivity and low rounding noise gain. Based on a class of Heisenberg implementations and normalized lattice structures, two types of all-pass digital filters for parallel computation are proposed. Parallel processing principle is discussed based on state space analysis method, and rounding noise gain expression is derived. For a N-order all-pass filter, the rounding noise gain is only 4N. The proposed architecture is more suitable for low-complexity and high-throughput digital systems because of its parallel processing capability. 4. Low-cost FIR digital filter implementation based on integrated circuits: subspace technology uses finite impulse response-FI R) Subitem sharing among the coefficients of digital filters can effectively reduce the number of adders for implementation; extrapolation compensation technique can effectively reduce the complexity of multiplication of multiple constant coefficients by utilizing the quasi-periodic characteristics of impulse response of FIR filters. Based on these two techniques, FIR filters are programmed on integrated circuits using hardware description language. Combining with the integrated circuit characteristics, the implementation method of high-speed and low-cost FIR filter is obtained by improving the hardware structure, which is helpful to further promote the practicality of FIR filter.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN713.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡毓,劉貴忠,侯興松,王海龍;基于多分辨框架下實(shí)現(xiàn)數(shù)字濾波器[J];廣西科學(xué);2001年03期
2 蘭琴;;微機(jī)保護(hù)中數(shù)字濾波器講授方法探討[J];重慶電力高等?茖W(xué)校學(xué)報(bào);2001年03期
3 楊益新,孫超;一種改進(jìn)的FIR數(shù)字濾波器自適應(yīng)設(shè)計(jì)方法[J];西北工業(yè)大學(xué)學(xué)報(bào);2002年04期
4 Ron Pearson;;以比例不變非線性數(shù)字濾波器有效凈化數(shù)據(jù)[J];電子設(shè)計(jì)技術(shù);2002年10期
5 陳佳敏 ,胡俊;FIR數(shù)字濾波器在數(shù)字化仿型數(shù)據(jù)處理中的應(yīng)用[J];精密制造與自動(dòng)化;2005年03期
6 馬潔;董金明;;IIR數(shù)字濾波器在定點(diǎn)DSP上的實(shí)現(xiàn)[J];聲學(xué)與電子工程;2006年02期
7 楊永昌;李晨輝;王凱;;FIR數(shù)字濾波器的設(shè)計(jì)方法[J];桂林航天工業(yè)高等?茖W(xué)校學(xué)報(bào);2006年03期
8 雷能芳;;FIR數(shù)字濾波器的一種快速算法[J];現(xiàn)代電子技術(shù);2006年21期
9 馬寶山;朱義勝;;一種用于基因預(yù)測(cè)的FIR數(shù)字濾波器[J];電子學(xué)報(bào);2007年09期
10 楊志飛;;基于軟件Measurement Studio的數(shù)字濾波器的設(shè)計(jì)與實(shí)現(xiàn)[J];電氣傳動(dòng)自動(dòng)化;2007年05期
相關(guān)會(huì)議論文 前10條
1 劉煥淋;何方白;張?jiān)器?莊陵;;FIR數(shù)字濾波器的設(shè)計(jì)與實(shí)現(xiàn)[A];第九屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2004年
2 賈再一;賴曉平;陳仕兵;;設(shè)計(jì)2D-FIR數(shù)字濾波器的隨機(jī)抽樣遞推最小二乘法[A];第九屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-99)論文集[C];1999年
3 黃建軍;謝維信;;一種直角可分的二維最佳數(shù)字濾波器[A];第十屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2001)論文集[C];2001年
4 張培珍;;FIR數(shù)字濾波器特性分析與組合窗設(shè)計(jì)法教學(xué)方案[A];2011高等職業(yè)教育電子信息類專業(yè)學(xué)術(shù)暨教學(xué)研討會(huì)論文集[C];2011年
5 夏驚雷;范建華;王庭昌;;高階FIR數(shù)字濾波器的優(yōu)化設(shè)計(jì)與實(shí)現(xiàn)[A];2005通信理論與技術(shù)新進(jìn)展——第十屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2005年
6 黃凱明;王兆明;林發(fā)炳;;連續(xù)平衡數(shù)字濾波器參數(shù)研究[A];2006中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2006年
7 張濤;蔣靜坪;張項(xiàng)安;;應(yīng)用于電力系統(tǒng)保護(hù)的FIR數(shù)字濾波器的設(shè)計(jì)研究[A];2006中國(guó)電力系統(tǒng)保護(hù)與控制學(xué)術(shù)研討會(huì)論文集[C];2006年
8 陳s,
本文編號(hào):2194890
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2194890.html