天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

具有時滯的隨機系統(tǒng)滾動時域控制研究

發(fā)布時間:2018-06-15 23:53

  本文選題:離散時間 + 連續(xù)時間; 參考:《山東大學》2017年博士論文


【摘要】:本文研究了多類具有輸入時滯隨機系統(tǒng)滾動時域控制(receding horizon control,RHC)問題.分別針對離散時間單輸入時滯隨機線性定常系統(tǒng)、多輸入時滯隨機線性定常系統(tǒng)、單輸入時滯隨機線性時變系統(tǒng)和連續(xù)時間單輸入時滯隨機線性定常系統(tǒng)RHC控制問題進行了深入的研究.主要學術貢獻及創(chuàng)新點:一、首次解決了單輸入時滯隨機線性定常系統(tǒng)(離散時間系統(tǒng)、連續(xù)時間系統(tǒng))RHC鎮(zhèn)定問題.通過構造包含兩個終端加權矩陣的特殊的性能指標和一組耦合的Lyapunov方程,得到了單輸入時滯隨機線性定常系統(tǒng)(離散系統(tǒng)、連續(xù)系統(tǒng))RHC鎮(zhèn)定的充要條件,在此條件下,推導出了條件期望形式顯式的鎮(zhèn)定控制器.二、為解決離散時間多輸入時滯隨機線性定常系統(tǒng)RHC鎮(zhèn)定問題,構造了關于控制加權矩陣時變的性能指標,給出了離散時間多輸入時滯隨機系統(tǒng)RHC鎮(zhèn)定的線性矩陣不等式(Linear matrix inequality,LMI)條件.本文構造RHC性能指標的思想對解決其它滾動時域優(yōu)化鎮(zhèn)定問題很有啟發(fā).三、首次解決了離散時間單輸入時滯隨機線性時變系統(tǒng)均方指數(shù)鎮(zhèn)定問題,給出了離散時間單輸入時滯隨機時變系統(tǒng)RHC均方指數(shù)鎮(zhèn)定充要條件及顯式的鎮(zhèn)定控制器.具體研究內(nèi)容按照章節(jié)順序包括如下幾個方面:1.研究了離散時間單輸入時滯隨機線性定常系統(tǒng)RHC鎮(zhèn)定問題以及耦合的Lyapunov不等式的求解.針對離散時間單輸入時滯隨機線性定常系統(tǒng),通過構造包含兩個終端加權矩陣的性能指標和分析Riccati-ZXL方程的基礎上,基于隨機控制理論,首次得到了離散時間單輸入時滯隨機系統(tǒng)RHC均方鎮(zhèn)定的充要條件為兩個耦合的Lyapunov不等式有解.針對兩個耦合Lyapunov不等式,給出了兩種求解算法,一是引入松弛變量得到了不等式求解的迭代算法;二是在對不等式進行轉化的基礎上,給出了錐補線性化算法(cone complementarity linearization,CCL).在滿足可鎮(zhèn)定的條件下,利用極值原理優(yōu)化給定的性能指標得到顯式的RHC鎮(zhèn)定控制器,該控制器為條件期望的形式,可以通過求解一組耦合的Riccati差分方程得到.2.研究了離散時間多輸入時滯隨機線性定常系統(tǒng)RHC鎮(zhèn)定問題.通過構造一控制加權矩陣為特殊時變的性能指標,得到了系統(tǒng)可鎮(zhèn)定的充分條件為性能指標中的兩個加權矩陣滿足一矩陣不等式,并且該矩陣不等式可以轉化成線性矩陣不等式進行求解.給出了離散時間多輸入時滯隨機系統(tǒng)RHC顯式鎮(zhèn)定控制器,通過選擇適當優(yōu)化時域,可以求解一組簡單的耦合的Riccati差分方程得到RHC控制增益.3.首先研究了離散時間隨機線性時變系統(tǒng)RHC鎮(zhèn)定問題,得到了系統(tǒng)RHC鎮(zhèn)定的充要條件.然后進一步研究了單輸入時滯隨機線性離散時變系統(tǒng)RHC均方指數(shù)鎮(zhèn)定問題.結合滾動時域優(yōu)化處理時變系統(tǒng)的優(yōu)點及耦合的Riccati差分方程的性質(zhì),得到了單輸入時滯隨機時變系統(tǒng)均方指數(shù)鎮(zhèn)定的充要條件.充分性通過分析最優(yōu)性能指標的性質(zhì),根據(jù)隨機Lyapunov穩(wěn)定性定理得證;必要性通過分析耦合的Riccati差分方程的漸近行為,從而導出了耦合的Lyapunov方程,證明了定理的必要性.在滿足可鎮(zhèn)定條件下,給出了單輸入時滯隨機時變系統(tǒng)顯式可鎮(zhèn)定的RHC控制器.4.首先研究了連續(xù)時間隨機線性時變系統(tǒng)RHC鎮(zhèn)定問題.在此基礎上,研究了連續(xù)時間單輸入時滯隨機線性定常系統(tǒng)RHC鎮(zhèn)定問題.相比離散時間隨機系統(tǒng),連續(xù)時間輸入時滯隨機系統(tǒng)RHC鎮(zhèn)定問題更復雜.通過構造一新的性能指標,首次解決了連續(xù)時間單輸入時滯隨機系統(tǒng)RHC鎮(zhèn)定問題,得到了系統(tǒng)RHC均方可鎮(zhèn)定當且僅當耦合的Lyapunov不等式有解.在該條件下,得到了系統(tǒng)鎮(zhèn)定的顯式控制器,該控制器可以通過求解一組耦合的Riccati微分方程得到.
[Abstract]:In this paper, we study the receding horizon control (RHC) problem of random linear time-delay systems with input time-delay. For discrete time single input time-delay stochastic linear constant systems, multiple input time-delay stochastic linear constant systems, single input time-delay stochastic linear time-varying systems and continuous time single input time-delay stochastic linear constant systems, respectively. The main academic contributions and innovation points are as follows: first, the RHC stabilization problem of a single input time-delay stochastic linear constant system (discrete time system, continuous time system) is solved for the first time. By constructing a special performance index containing two terminal weighted matrices and a set of coupled Lyapunov equations, the problem is obtained for the first time. A sufficient and necessary condition for RHC stabilization of a single input time-delay stochastic linear constant system (discrete system, continuous system) is given. Under this condition, a conditional formal explicit controller is derived. Two, in order to solve the RHC stabilization problem of a discrete time multi input time-delay stochastic linear constant system, a performance index for the time variation of the weighted matrix is constructed. The condition of linear matrix inequalities (Linear matrix inequality, LMI) for discrete time multi input time-delay stochastic systems RHC is given. The idea of constructing RHC performance indicators in this paper is very enlightening for solving other rolling time domain optimal stabilization problems. Three, the mean square exponential town of discrete time single input time-delay stochastic linear time-varying systems is solved for the first time. The sufficient and necessary conditions for RHC mean square exponential stabilization and explicit stabilization controllers for discrete time single input time-delay stochastic time-delay systems are given. The specific research contents include the following aspects according to the sequence of chapters: 1. the RHC stabilization problem and the coupled Lyapunov inequality for the discrete time single input time-delay stochastic linear constant system are studied. For the discrete time single input time-delay stochastic linear constant system, the necessary and sufficient condition for the RHC mean square stabilization of the discrete time single input time-delay stochastic system is obtained by constructing the performance indexes including two terminal weighted matrices and analyzing the Riccati-ZXL equation, and the sufficient and necessary conditions for the RHC mean square stabilization of the discrete time single input time-delay stochastic systems are for the first time. Two solutions are given for two coupled Lyapunov inequalities. One is an iterative algorithm for solving inequalities by introducing relaxation variables. Two, on the basis of the transformation of inequalities, the cone complement linearization algorithm (cone complementarity linearization, CCL) is given. The value principle optimizes the given performance index to get the explicit RHC stabilization controller. The controller can obtain the RHC stabilization problem of the discrete time multi input time-delay stochastic linear constant system by solving a set of coupled Riccati difference equations. The controller is a conditional expectation form. By constructing a control weighted matrix, it is a special time variable. The sufficient conditions for the stabilization of the system are obtained. The two weighted matrices in the performance index are satisfied with a matrix inequality, and the matrix inequalities can be converted into linear matrix inequalities. The RHC explicit stabilization controller for discrete time multi input time-delay stochastic systems is given. The RHC control gain.3. is obtained by solving a group of simple coupled Riccati difference equations. First, the RHC stabilization problem of discrete time stochastic linear time-varying systems is studied. The sufficient and necessary conditions for the stabilization of the system RHC are obtained. Then, the RHC mean square exponential stabilization problem of the single input time-delay stochastic linear discrete time-varying system is further studied. The sufficient and necessary condition for the mean square exponential stabilization of a stochastic time-varying system with single input time delay is obtained by dealing with the advantages of the time-varying system and the properties of the coupled Riccati difference equation. By analyzing the properties of the optimal performance index, the sufficient property is proved by the stochastic Lyapunov stability theorem, and the necessity has passed the asymptotic behavior of the Riccati differential equation of the analysis coupling. In this way, the coupled Lyapunov equation is derived, and the necessity of the theorem is proved. Under the condition of satisfying the stabilization, the RHC controller.4. explicitly stabilizable for a single input time-delay stochastic time-varying system is given. First, the RHC stabilization problem of a continuous time stochastic linear time-varying system is studied. On this basis, the continuous time single input time-delay random line is studied. RHC stabilization problem of constant time invariant systems. Compared to discrete time stochastic systems, the RHC stabilization problem of continuous time input time-delay stochastic systems is more complex. By constructing a new performance index, the problem of RHC stabilization for continuous time single input time-delay stochastic systems is solved for the first time. The system RHC mean square can be stabilized when and only when the Lyapunov inequality is coupled. Have the solution. In this condition, the explicit stabilization controller system, the Riccati controller can be obtained by solving a set of coupled differential equations.
【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TP13

【相似文獻】

相關期刊論文 前10條

1 吳森堂;隨機系統(tǒng)的后驗橢球條件濾波方法[J];北京航空航天大學學報;1999年02期

2 騰香;;不確定時滯隨機系統(tǒng)的魯棒隨機鎮(zhèn)定[J];渤海大學學報(自然科學版);2009年03期

3 張志方;《隨機系統(tǒng)理論》評介[J];控制理論與應用;1988年02期

4 李守琴,朱宏;任意離散隨機系統(tǒng)的計算機生成[J];電子科技大學學報;1992年02期

5 馮昭樞;劉永清;;多滯后隨機系統(tǒng)的滯后無關均方穩(wěn)定性[J];控制與決策;1992年04期

6 陳理榮;窄帶隨機系統(tǒng)的等效基帶隨機系統(tǒng)[J];重慶郵電學院學報;1994年01期

7 羅貴明;多步時滯隨機系統(tǒng)的適應跟蹤[J];清華大學學報(自然科學版);1996年12期

8 陳雪波,Stankovic′SS;離散隨機系統(tǒng)的包含原理[J];自動化學報;1997年01期

9 王芳;秦永彬;許道云;;有限隨機系統(tǒng)的極限性質(zhì)[J];計算機應用與軟件;2014年03期

10 梁濤;用仿真方法對隨機系統(tǒng)優(yōu)化設計[J];西南科技大學學報;2003年02期

相關會議論文 前10條

1 張維海;譚成;;復隨機系統(tǒng)的穩(wěn)定性和可檢測性[A];第24屆中國控制與決策會議論文集[C];2012年

2 郭鋒衛(wèi);劉永清;馮昭樞;;離散隨機系統(tǒng)的實用穩(wěn)定性[A];1993中國控制與決策學術年會論文集[C];1993年

3 王子棟;馮纘剛;郭治;單甘霖;;離散隨機系統(tǒng)的有限拍協(xié)方差配置控制[A];1993中國控制與決策學術年會論文集[C];1993年

4 徐愛平;吳臻;;狀態(tài)約束下的一類正倒向隨機系統(tǒng)的最優(yōu)控制問題[A];1997中國控制與決策學術年會論文集[C];1997年

5 宮亞梅;沃松林;顏鵬;;時滯隨機系統(tǒng)的H_∞ 保成本控制[A];2009中國控制與決策會議論文集(3)[C];2009年

6 馬平;;隨機系統(tǒng)穩(wěn)健加權自適應最小方差控制[A];1996年中國控制會議論文集[C];1996年

7 王玲;韓志剛;;一類隨機系統(tǒng)的穩(wěn)定性分析[A];1997中國控制與決策學術年會論文集[C];1997年

8 蔡胤;劉飛;;不確定時滯切換隨機系統(tǒng)分析及H_∞控制[A];2006中國控制與決策學術年會論文集[C];2006年

9 陳翰馥;張紀峰;;不穩(wěn)定、非最小相位隨機系統(tǒng)的適應鎮(zhèn)定[A];1991年控制理論及其應用年會論文集(下)[C];1991年

10 臧文利;王遠鋼;郭治;;離散隨機系統(tǒng)非脆弱滿意估計器的設計[A];2005全國自動化新技術學術交流會論文集(三)[C];2005年

相關博士學位論文 前10條

1 叢薪蓉;幾類隨機系統(tǒng)的穩(wěn)定性問題及其應用[D];哈爾濱工業(yè)大學;2014年

2 楊華;時滯Markov跳變非線性隨機系統(tǒng)在幾乎必然意義下的濾波與控制[D];東華大學;2015年

3 張宇;幾類隨機系統(tǒng)數(shù)值穩(wěn)定性分析[D];哈爾濱工業(yè)大學;2016年

4 邱親偉;基于離散觀測的連續(xù)型混雜隨機系統(tǒng)的鎮(zhèn)定及其數(shù)值方法研究[D];東華大學;2016年

5 焦提操;幾類非線性隨機系統(tǒng)的穩(wěn)定分析與控制[D];南京理工大學;2016年

6 高榮;具有時滯的隨機系統(tǒng)滾動時域控制研究[D];山東大學;2017年

7 闞秀;幾類隨機系統(tǒng)的估計問題研究[D];東華大學;2013年

8 蔣鋒;隨機系統(tǒng)數(shù)值方法的動力學行為研究[D];華中科技大學;2011年

9 馬立豐;一類非線性隨機系統(tǒng)的滿意控制與濾波[D];南京理工大學;2010年

10 戴喜生;無窮維隨機系統(tǒng)的穩(wěn)定性、可控性及其應用[D];華南理工大學;2010年

相關碩士學位論文 前10條

1 葉鳳彤;區(qū)間時滯隨機系統(tǒng)的非脆弱保成本控制研究[D];渤海大學;2015年

2 徐文姝;區(qū)間時滯隨機系統(tǒng)的魯棒H_∞控制研究[D];渤海大學;2015年

3 苗曉莎;幾類非線性中立型隨機微分方程(組)穩(wěn)定性研究[D];哈爾濱工業(yè)大學;2015年

4 熊晶;非高斯隨機系統(tǒng)的故障診斷研究及應用[D];華北電力大學;2015年

5 段銳銳;離散T-S雙曲正切系統(tǒng)的模糊控制[D];西安電子科技大學;2014年

6 絮曉;It?型隨機系統(tǒng)的預測控制研究[D];魯東大學;2016年

7 閆sメ,

本文編號:2024223


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/2024223.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶cb838***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com