幾類(lèi)非線(xiàn)性隨機(jī)系統(tǒng)的魯棒穩(wěn)定性分析及控制
發(fā)布時(shí)間:2018-06-02 21:34
本文選題:隨機(jī)系統(tǒng) + 穩(wěn)定性; 參考:《哈爾濱工業(yè)大學(xué)》2015年博士論文
【摘要】:隨著科技的進(jìn)步,在實(shí)際應(yīng)用中對(duì)所建立的系統(tǒng)模型的精確度要求越來(lái)越高,傳統(tǒng)的確定性系統(tǒng)模型顯然已經(jīng)不能滿(mǎn)足這種高精度需求。另一方面,隨機(jī)因素和時(shí)滯又時(shí)常會(huì)破壞系統(tǒng)的性能和穩(wěn)定性,所以對(duì)隨機(jī)時(shí)滯系統(tǒng)的穩(wěn)定性研究和控制器設(shè)計(jì)就成為了一個(gè)亟待解決的問(wèn)題。自適應(yīng)估計(jì)是估計(jì)系統(tǒng)中未知參數(shù)非常有效的方法,但由于隨機(jī)因素的影響,對(duì)帶有未知參數(shù)的非線(xiàn)性隨機(jī)系統(tǒng)進(jìn)行參數(shù)估計(jì)和自適應(yīng)控制是很有難度的。本文利用隨機(jī)Lyapunov穩(wěn)定性理論、隨機(jī)積分性質(zhì)定理、線(xiàn)性矩陣不等式(LMI)以及參數(shù)分離理論對(duì)非線(xiàn)性隨機(jī)系統(tǒng)的穩(wěn)定性及控制器設(shè)計(jì)問(wèn)題進(jìn)行了研究。其主要研究?jī)?nèi)容以及得到的結(jié)果包含以下幾個(gè)方面:利用Lyapunov-Krasovskii泛函結(jié)合線(xiàn)性矩陣不等式方法,基于單邊Lips-chitz條件和二次內(nèi)有界條件提出了一個(gè)新的時(shí)滯相關(guān)穩(wěn)定性判據(jù),由線(xiàn)性矩陣不等式給出了不確定隨機(jī)非線(xiàn)性系統(tǒng)保守性較小的穩(wěn)定性條件。設(shè)計(jì)了一個(gè)非脆弱狀態(tài)反饋控制器以保證閉環(huán)系統(tǒng)是魯棒隨機(jī)穩(wěn)定的,并且提出了H∞魯棒控制器設(shè)計(jì)方法,以確保閉環(huán)系統(tǒng)滿(mǎn)足一定的H∞性能。研究了Lipschitz隨機(jī)離散系統(tǒng)的觀(guān)測(cè)器設(shè)計(jì)。由于廣義Lipschitz條件能夠更好的利用非線(xiàn)性部分的結(jié)構(gòu)信息,所以將廣義Lipschitz條件引入到一類(lèi)非線(xiàn)性隨機(jī)離散系統(tǒng)的觀(guān)測(cè)器設(shè)計(jì)中。對(duì)于非線(xiàn)性系統(tǒng)中不含有隨機(jī)因素的情形,給出了全階及降階觀(guān)測(cè)器設(shè)計(jì)方法,進(jìn)而將其理論推廣至非線(xiàn)性隨機(jī)離散系統(tǒng),給出了非線(xiàn)性隨機(jī)離散系統(tǒng)的穩(wěn)定性判據(jù)和觀(guān)測(cè)器設(shè)計(jì)條件。利用LMI技術(shù)和二次穩(wěn)定性理論導(dǎo)出了新的觀(guān)測(cè)器合成方法。考慮了一類(lèi)非線(xiàn)性隨機(jī)(連續(xù)及離散)系統(tǒng)的自適應(yīng)觀(guān)測(cè)器設(shè)計(jì)。系統(tǒng)中未知常數(shù)參數(shù)假設(shè)為實(shí)范數(shù)有界的。將廣義Lipschitz條件引入到非線(xiàn)性隨機(jī)系統(tǒng)的自適應(yīng)觀(guān)測(cè)器設(shè)計(jì)中,可以更充分的利用非線(xiàn)性部分所提供的的結(jié)構(gòu)信息;贚yapunov-Krasovskii泛函方法和隨機(jī)Lyapunov穩(wěn)定性理論,設(shè)計(jì)出了一個(gè)新的使得誤差系統(tǒng)在均方意義下一致指數(shù)有界的自適應(yīng)觀(guān)測(cè)器設(shè)計(jì)條件。研究了一類(lèi)帶有確定性擾動(dòng)及隨機(jī)擾動(dòng)的非線(xiàn)性隨機(jī)系統(tǒng)的自適應(yīng)估計(jì)及控制器設(shè)計(jì)問(wèn)題。提出了一個(gè)新的設(shè)計(jì)分析方法構(gòu)造自適應(yīng)控制器。利用隨機(jī)Lyapunov理論,狀態(tài)反饋增益和觀(guān)測(cè)器增益設(shè)計(jì)的分離理論設(shè)計(jì)了自適應(yīng)狀態(tài)及參數(shù)估計(jì)器,以保證閉環(huán)系統(tǒng)是隨機(jī)穩(wěn)定的。并且把研究方法推廣至隨機(jī)時(shí)滯系統(tǒng),得到了參數(shù)估計(jì)器存在的充分條件。最后,給出了本文的總結(jié)及研究發(fā)展前景。
[Abstract]:With the development of science and technology, the accuracy of the established system model is becoming more and more high in practical application. The traditional deterministic system model obviously can not meet this kind of high precision demand. On the other hand, stochastic factors and delays often destroy the performance and stability of the system, so the stability research and controller design of stochastic time-delay systems become an urgent problem to be solved. Adaptive estimation is an effective method for estimating unknown parameters in the system. However, due to the influence of random factors, it is very difficult to estimate and control the parameters of nonlinear stochastic systems with unknown parameters. In this paper, the stability and controller design of nonlinear stochastic systems are studied by means of stochastic Lyapunov stability theory, stochastic integral property theorem, linear matrix inequality (LMI) and parameter separation theory. The main research contents and results are as follows: using Lyapunov-Krasovskii functional and linear matrix inequality method, a new delay-dependent stability criterion is proposed based on one-sided Lips-chitz condition and quadratic inner bounded condition. The stability conditions of uncertain stochastic nonlinear systems with less conservatism are given by using linear matrix inequalities (LMIs). In this paper, a non-fragile state feedback controller is designed to ensure that the closed-loop system is robust stochastic stable, and an H _ 鈭,
本文編號(hào):1970279
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/1970279.html
最近更新
教材專(zhuān)著