銻化物超晶格紅外探測器研究
本文選題:銻化物超晶格 + 紅外探測器。 參考:《中國科學院上海技術物理研究所》2017年博士論文
【摘要】:銻化物超晶格紅外探測器是當前光子型紅外探測器領域的研究熱點,是極具潛力的新型紅外技術。銻化物超晶格探測器以III-V族化合物半導體為材料,利用高精度材料生長技術,控制不同材料構成特性的結構,以實現(xiàn)紅外輻射的探測。通過改變結構中各層材料的厚度來調整探測器的禁帶寬度,探測范圍可覆蓋1μm至30μm。III-V族化合物半導體材料生長和器件制備技術成熟,均勻性好,此外還具有抗輻照性能強等優(yōu)勢,所以銻化物超晶格探測器受到了廣泛的研究。本文聚焦于InP基的In GaAs/GaAsSb和GaSb基的InAs/GaSb兩種銻化物II類超晶格紅外探測器,主要開展了以下幾方面的研究:1.研究了InP襯底上GaAsSb材料的生長工藝,利用非平衡熱力學模型對生長過程進行了模擬,在此基礎上獲得了In GaAs/GaAsSb II類超晶格材料。利用光致發(fā)光譜對該材料的光學性質進行了研究,發(fā)現(xiàn)由于能帶的彎曲效應,造成PL峰值能量值隨著激發(fā)功率的增加出現(xiàn)藍移的現(xiàn)象,并對峰值能量與溫度關系進行了擬合。研究了Be摻雜溫度對超晶格特性的影響,并通過Be的補償摻雜獲得了p型的InGaAs/GaAsSb II類超晶格。制備了不同吸收區(qū)厚度和吸收區(qū)補償摻雜的探測器,并對性能進行了表征,發(fā)現(xiàn)吸收區(qū)厚度的增加對提升器件量子效率有限,而采用補償摻雜技術的探測器量子效率得到了顯著提升。最后制備出了InGaAs/GaAsSb II類超晶格320×256焦平面原型器件,在200 K溫度下,pπn焦平面器件的峰值探測率為4.3×1011 cm?Hz1/2?W-1,響應不均勻性12%。2.設計了和生長了GaSb基pBπBn結構InAs/GaSb II類超晶格材料,吸收區(qū)的晶格失配Δa/a僅為2.1×10-5,-1級衛(wèi)星峰的全寬半高峰(FWHM)為21.6弧秒。為了獲得高性能的長波12μm InAs/GaSb II類超晶格焦平面器件,針對GaSb襯底強吸收紅外光的問題,對所用GaSb襯底對紅外光的吸收機制和襯底厚度與透射率的關系進行了研究,發(fā)現(xiàn)GaSb襯底的吸收機制以光學聲子和電離雜質散射為主導,襯底減薄對GaSb透過率的提升十分有限。通過選擇性腐蝕試驗得到了超晶格探測器的去襯底工藝,解決了襯底對紅外光的強吸收問題。針對大面陣焦平面器件熱失配導致的裂片問題,對焦平面器件封裝結構進行優(yōu)化設計和實驗驗證,提出了最優(yōu)的封裝方案,成功獲得了320×256長波12μm InAs/GaSb II類超晶格焦平面器件。3.對制備的320×256長波12μm InAs/GaSb II類超晶格焦平面器件進行性能測試和分析。80 K和65 K溫度下探測器的相對響應光譜基本重合,50%截止波長為12μm。通過四種暗電流機制對探測器的擬合進行了擬合與分析,當溫度高于70 K時,暗電流以擴散電流為主導,低溫時以產生復合電流為主導。測試了不同背景輻射下探測器的電流-電壓曲線,發(fā)現(xiàn)探測器的響應并不會隨著溫度與偏壓發(fā)生變化。研究了溫度和電路偏置電壓與焦平面器件響應之間的關系,得到了電路注入效率是主要影響焦平面器件響應的因素。對盲元產生的緣由進行了分析,發(fā)現(xiàn)少部分為銦柱互連不佳,大部分是由于探測器的暗電流比平均值偏大。通過反饋優(yōu)化器件的制備工藝,獲得了國內第一個長波12μm InAs/GaSb II類超晶格焦平面組件,峰值探測率能夠達到7.2×1010 cm?Hz1/2?W-1,盲元率為2.7%,響應不均勻性為7.8%,噪聲等效溫差29.2 mK。4.針對紅外遙感的應用,開展了γ輻照對InAs/GaSb II類超晶格探測器性能影響的研究。通過背照型器件的實時輻照實驗,InAs/GaSb II類超晶格器件性能基本未發(fā)生變化,表明該超晶格探測器具有良好的抗輻照特性。結合實時的電流-電壓曲線和輻照停止后器件電流隨時間的演化情況,對輻照所帶來的微觀損失機理進行了分析,發(fā)現(xiàn)零偏和小反偏壓下,電離效應損傷為主導,短時間即可恢復,大反偏壓下則以位移效應損傷為主導,恢復時間明顯增長。對焦平面器件輻照前后的性能測試進行對比,發(fā)現(xiàn)輻照并不會影響探測器的基本性能,但會影響讀出電路,使其工作狀態(tài)發(fā)生變化甚至是失效。通過將正照型器件的輻照實驗結果與背照型器件對比,發(fā)現(xiàn)二者具有相同的輻照損傷機制。
[Abstract]:Antimony Superlattice Infrared detector is a hot spot in the field of current photon infrared detectors. It is a potential new infrared technology. Antimony superlattice detector uses III-V compound semiconductor as the material, and uses high precision material growth technology to control the structure of different material components, so as to realize the detection of infrared radiation. The width of the detector is adjusted by changing the thickness of the material in the structure. The detection range can cover the growth of 1 to 30 m to 30 mu semiconductor materials and the mature of device preparation technology, good uniformity and strong radiation resistance. So the antimony superlattice detector has been widely studied. This paper focuses on the focus of this paper. InP based In GaAs/GaAsSb and GaSb based InAs/GaSb two antimony II Superlattice Infrared detectors have been studied in the following aspects: 1. the growth process of GaAsSb materials on the InP substrate was studied. The growth process was simulated by the non equilibrium thermodynamic model, and the In GaAs/GaAsSb II superlattice was obtained on this basis. The optical properties of the material were studied by photoluminescence. It was found that the peak energy value of PL appeared blue shift with the increase of the excitation power, and the relationship between the peak energy and the temperature was fitted. The effect of the Be doping temperature on the properties of the superlattice was studied, and the compensation of the Be was studied. The P type InGaAs/GaAsSb II superlattice is obtained by doping. The detector with different absorption region thickness and absorption region is prepared, and the performance is characterized. It is found that the increase of the thickness of the absorption region is limited to the quantum efficiency of the hoisting device, and the quantum efficiency of the detector using the compensation doping technique has been greatly improved. Finally, the preparation of the detector is made. The InGaAs/GaAsSb II superlattice 320 x 256 focal plane prototype device, at the temperature of 200 K, the peak detection rate of P PI n focal plane is 4.3 x 1011 cm? Hz1/2? W-1, and the response inhomogeneity 12%.2. design and growth of GaSb based pB PI Bn structure superlattice materials, the lattice mismatch of the absorption region is only 2.1 x 10-5, the peak satellite peak The full width and half peak (FWHM) is 21.6 arc seconds. In order to obtain high performance long wave 12 m InAs/GaSb II superlattice FPA, the absorption mechanism of infrared light on the GaSb substrate and the relationship between the thickness of the substrate and the transmittance of the substrate on the GaSb substrate are studied. The absorption mechanism of the GaSb substrate is found to be optical phonon. With the ionizing impurity scattering as the dominant factor, the enhancement of the GaSb transmittance is very limited by substrate thinning. Through selective corrosion test, the undersubstrate process of the superlattice detector has been obtained. The strong absorption of the substrate to the infrared light is solved. The packaging structure of the focal plane device is carried out for the split sheet problem caused by the thermal mismatch of the large surface array focal plane devices. Optimized design and experimental verification, the optimal package scheme was proposed. The performance test of the 320 * 256 long wave 12 m InAs/GaSb II superlattice FPA with 320 * 256 long wave 12 mu m InAs/GaSb II superlattice device was successfully obtained and the analysis of the relative response spectrum of the detector under.80 K and 65 K temperature was the basic coincidence, 5 0% the cut-off wavelength is 12 mu m. to fit and analyze the fitting of the detector through four dark current mechanisms. When the temperature is higher than 70 K, the dark current is dominated by the diffusion current, and the composite current is produced at low temperature. The current voltage curve of the detector under different background radiation is tested, and the response of the detector is not found to be with the temperature. The relationship between the temperature and the circuit bias voltage and the response of the focal plane is studied. It is found that the injection efficiency of the circuit is the main factor affecting the response of the focal plane device. The cause of the blind element is analyzed, and it is found that a few indium interconnects are poor, most of which are due to the average dark current ratio of the detector. The first long wave 12 m InAs/GaSb II superlattice FPA module is obtained by feedback optimization, the peak detection rate can reach 7.2 x 1010 cm? Hz1/2? W-1, the blind element rate is 2.7%, the response inhomogeneity is 7.8%, the noise equivalent temperature difference 29.2 mK.4. is applied to the infrared remote sensing, and InAs is carried out to InAs Research on the performance of /GaSb II superlattice detectors. The performance of InAs/GaSb II superlattice is basically unchanged through real-time irradiation experiments of a backlit device. It shows that the superlattice detector has good radiation resistance. The microscopic loss mechanism caused by irradiation is analyzed. It is found that the damage of ionization effect is dominant under the zero bias and the small reverse bias, and the time can be restored in a short time. The displacement effect is dominant and the recovery time is obviously increased under the large reverse bias. The comparison of the performance test before and after the irradiation of the focal plane device shows that the irradiation does not affect the exploration. The basic performance of the tester will affect the read-out circuit and make its working state change or even fail. By comparing the experimental results of the irradiated device to the backlit device, the two are found to have the same radiation damage mechanism.
【學位授予單位】:中國科學院上海技術物理研究所
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TN215
【參考文獻】
相關期刊論文 前10條
1 許佳佳;陳建新;周易;徐慶慶;王芳芳;徐志成;白治中;靳川;陳洪雷;丁瑞軍;何力;;320×256元InAs/GaSb Ⅱ類超晶格長波紅外焦平面探測器[J];紅外與毫米波學報;2014年06期
2 周易;陳建新;徐慶慶;徐志成;靳川;許佳佳;金巨鵬;何力;;長波InAs/GaSbⅡ類超晶格紅外探測器[J];紅外與毫米波學報;2013年03期
3 周易;陳建新;何力;;四層結構模型下的InAs/GaSb超晶格材料能帶計算[J];紅外與毫米波學報;2013年01期
4 徐慶慶;陳建新;周易;李天興;呂翔;何力;;InAs/GaSb超晶格中波焦平面材料的分子束外延技術[J];紅外與毫米波學報;2011年05期
5 葉志成;舒永春;曹雪;龔亮;皮彪;姚江宏;邢曉東;許京軍;;Ⅲ-Ⅴ族三元化合物半導體材料分子束外延的生長熱力學(英文)[J];Transactions of Nonferrous Metals Society of China;2011年01期
6 李淘;汪洋;李永富;唐恒敬;李雪;龔海梅;;臺面型InGaAs探測器暗電流及低頻噪聲研究[J];光電子.激光;2010年04期
7 林加木;丁瑞軍;陳洪雷;沈曉;劉非;;紅外焦平面讀出電路輻射特性研究[J];激光與紅外;2009年08期
8 李言謹;何力;楊建榮;丁瑞軍;張勤耀;胡曉寧;王建新;倪云芝;唐紅蘭;曹菊英;王正官;吳云;朱建妹;;碲鎘汞紅外焦平面器件熱失配應力研究[J];紅外與毫米波學報;2008年06期
9 魏志勇;方美華;楊浩;;深空條件下航天器內的輻射環(huán)境研究[J];航天器環(huán)境工程;2008年03期
10 李桃生;陳軍;王志強;;空間輻射環(huán)境概述[J];輻射防護通訊;2008年02期
,本文編號:1836452
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/1836452.html