天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

碳基阻變存儲(chǔ)器導(dǎo)電通道調(diào)控及其機(jī)理研究

發(fā)布時(shí)間:2018-02-16 18:15

  本文關(guān)鍵詞: 阻變式存儲(chǔ)器 導(dǎo)電通道 氧化還原 限制電流 非晶碳 氧化石墨烯 出處:《東北師范大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文


【摘要】:傳統(tǒng)的浮柵型存儲(chǔ)器受限于尺寸無(wú)法進(jìn)一步縮小,為了更好滿足未來(lái)信息存儲(chǔ)需求,目前多種新型存儲(chǔ)器件陸續(xù)被提出。其中,阻變式存儲(chǔ)器(RRAM)以其結(jié)構(gòu)簡(jiǎn)單、低功耗、讀寫(xiě)速度快等優(yōu)點(diǎn),被認(rèn)為非常有前景成為下一代信息存儲(chǔ)器。RRAM一般是將固態(tài)電介質(zhì)材料夾在兩個(gè)電極之間,利用電介質(zhì)中的導(dǎo)電通道形成和斷裂來(lái)實(shí)現(xiàn)電阻轉(zhuǎn)換。然而,目前RRAM的工作機(jī)理尚未十分明確,且器件性能仍需進(jìn)一步提升。因此對(duì)導(dǎo)電通道進(jìn)行深入研究,包括有效調(diào)控導(dǎo)電通道大小,探究導(dǎo)電通道尺寸效應(yīng)以及控制阻變過(guò)程中導(dǎo)電通道通斷位置等將有助于進(jìn)一步理解RRAM并促進(jìn)其發(fā)展。此外,在目前眾多電介質(zhì)材料中,碳基材料被公認(rèn)為最有可能取代傳統(tǒng)硅基材料應(yīng)用在未來(lái)微電子領(lǐng)域中,因此碳基RRAM的研究對(duì)未來(lái)碳基電子學(xué)發(fā)展具有重要意義。本論文將在碳基阻變存儲(chǔ)器導(dǎo)電通道調(diào)控和機(jī)理探究等方面開(kāi)展工作,具體研究?jī)?nèi)容如下:導(dǎo)電通道尺寸調(diào)控:我們采用非晶碳(a-C)作為阻變層,Cu和Pt作為電極,構(gòu)筑了Cu/a-C/Pt RRAM器件。通過(guò)調(diào)節(jié)限制電流調(diào)控了導(dǎo)電通道尺寸,并且觀察到了非易失/易失性共存的特性和原子級(jí)別尺寸導(dǎo)電通道電導(dǎo)量子化現(xiàn)象。定量研究低阻態(tài)弛豫時(shí)間與通道尺寸以及溫度關(guān)系表明:Cu/a-C/Pt RRAM器件易失性是由于小尺寸導(dǎo)電通道自身表面能過(guò)大導(dǎo)致的瑞利不穩(wěn)定性所引起的。傅里葉熱穩(wěn)態(tài)方程計(jì)算發(fā)現(xiàn)隨著導(dǎo)電通道尺寸增加其斷裂所需焦耳熱也增多。器件高阻態(tài)隨著導(dǎo)電通道尺寸增加而降低可歸因于溫度導(dǎo)致的a-C亞穩(wěn)態(tài)薄膜中sp2團(tuán)簇增大。導(dǎo)電通道通斷位置調(diào)控:針對(duì)RRAM導(dǎo)電通道隨機(jī)形成與斷裂導(dǎo)致器件阻變參數(shù)波動(dòng)較大這一問(wèn)題,這里我們采用恒電流作用方法提高Cu/a-C/Pt器件穩(wěn)定性。恒電流作用能夠有效增大a-C薄膜中sp2團(tuán)簇尺寸,進(jìn)而提高薄膜內(nèi)局域電場(chǎng),有效控制導(dǎo)電通道轉(zhuǎn)變位置,實(shí)現(xiàn)均一的阻變特性;另一方面,我們利用多孔薄膜構(gòu)筑了一種“forming-free”的RRAM器件。Ag電極蒸鍍過(guò)程中能夠在多納米孔薄膜中預(yù)先形成Ag導(dǎo)電通道。進(jìn)一步我們采用Ag導(dǎo)電通道作為納米電極(尺寸與導(dǎo)電通道可比)來(lái)替代傳統(tǒng)的微尺度電極提高碳基RRAM穩(wěn)定性。實(shí)驗(yàn)表明,采用納米尺度電極的器件相對(duì)于傳統(tǒng)微尺度電極的存儲(chǔ)器具有更為均一的阻變參數(shù)。導(dǎo)電通道機(jī)理探究:為了原位觀察阻變過(guò)程中導(dǎo)電通道的動(dòng)態(tài)過(guò)程,我們利用阻變過(guò)程中顏色(帶隙)發(fā)生變化的半導(dǎo)體材料作為阻變層。本文采用光刻方法制備了平面微尺度的金/氧化石墨烯/金(Au/GO/Au)結(jié)構(gòu)來(lái)替代傳統(tǒng)的金屬/絕緣體/金屬堆疊結(jié)構(gòu)。XPS和Raman表征證實(shí)了導(dǎo)電通道本質(zhì)是還原氧化石墨(RGO)。利用光學(xué)顯微鏡我們觀察到了RGO導(dǎo)電通道從負(fù)極向正極延伸生長(zhǎng)。同時(shí),研究發(fā)現(xiàn)環(huán)境濕度能夠影響阻變過(guò)程:當(dāng)環(huán)境濕度達(dá)到80%時(shí),RGO導(dǎo)電通道能夠部分被氧化為GO。并且RGO導(dǎo)電通道在關(guān)閉電壓正極一側(cè)發(fā)生氧化。結(jié)果表明水在GO的氧化還原過(guò)程中起到了至關(guān)重要的作用。
[Abstract]:Floating gate memory is limited to the size of the traditional cannot be further reduced, in order to better meet the future demand for information storage, at present many new memory devices have been proposed. Among them, resistive memory (RRAM) with its simple structure, low power consumption, read and write speed, is considered very promising to become the next memory information.RRAM is a general solid dielectric material sandwiched between two electrodes, using conductive channel in dielectric formation and fracture resistance to achieve conversion. However, the working mechanism of RRAM is not clear, and the performance of the device needs to be improved. So in-depth study of the conductive channel, including the effective regulation of conductive channel size, conductive explore the channel conducting channel size effect and control process of resistive on-off position will contribute to further understanding of RRAM and promote its development. In addition, the number of electric current Dielectric materials, carbon based materials have been recognized as the most likely to replace the application of traditional silicon-based materials in the future in the field of microelectronics, therefore the research of carbon based RRAM has important significance for the future development of carbon based electronics. This paper will change memory conductive channel regulation and mechanism research and other aspects of the work in carbon based resistance, specific research the contents are as follows: conductive channel size regulation: we use amorphous carbon (a-C) as a resistive layer, Cu and Pt as electrode, build a Cu/a-C/Pt RRAM device. By adjusting the current limit control of conductive channel size, and observed a nonvolatile / non-volatile coexistence properties and atomic level size conductive channel conductance quantum phenomenon. Quantitative research showed low resistance relaxation time and the channel size and temperature: Cu/a-C/Pt RRAM device is volatile due to the small size of the conductive channel due to the large Rayleigh surface can not The stability caused by the calculation. With the increase in size of the conductive channel required to fracture the Joule heat is also increased. The Fourier thermal steady state equations of devices with high resistance state with conductive channel size increases can be attributed to a-C metastable film on the temperature induced SP2 cluster increases. Conducting channel on-off position regulation: fluctuation of the problem the device parameters and fracture resistance change leads to the formation of random RRAM conductive channel, here we use methods of constant current Cu/a-C/Pt to improve device stability. Constant current effect can effectively increase a-C film SP2 clusters, and then increase the film within the local electric field, effectively control the conducting channel change position, realize uniform resistance characteristics; another.Ag, we use the porous film electrode of the RRAM device to build a "forming-free" in the process of evaporation in porous film in pre formed Ag Guide Electric channel. We use Ag as a further conductive channel (nano electrode size and conductive channel ratio) to replace the traditional micro electrode to improve the carbon RRAM stability. Experimental results show that the device using nano scale electrodes with respect to the memory of traditional micro electrodes with varying parameters is more uniform. The resistance conductive channel: in order to explore the mechanism of the dynamic process of conducting channels in situ observation of resistance change in the process, we use the color resistance change process (GAP) semiconductor material changes as resistive layer. The preparation of planar micro scale Au / graphene oxide / gold by photoetching method (Au/GO/Au) to replace the traditional metal / insulator / metal the stack structure of.XPS and Raman confirmed that the conductive channel is the essence of reduction of graphene oxide (RGO). We observed the growth of RGO conductive channel extending from the cathode to the cathode by optical microscope. When the study found that environmental humidity can influence the resistance change process: when the relative humidity reaches 80%, RGO conductive channels can be oxidized to GO. and RGO part of conductive channel in the closed side voltage cathode oxidation. The results show that the reduction of water in the GO oxidation process plays a very important role.

【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP333

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;存儲(chǔ)器、鎖存器[J];電子科技文摘;1999年08期

2 蔡剛;楊海鋼;;嵌入式可編程存儲(chǔ)器設(shè)計(jì)中的“選擇性寄存”方法[J];電子與信息學(xué)報(bào);2009年11期

3 顧晶晶;陳琳;徐巖;孫清清;丁士進(jìn);張衛(wèi);;NiO_x阻變存儲(chǔ)器性能增強(qiáng)方法及相關(guān)機(jī)理研究[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2010年06期

4 尹守峻;高修忠;何家喜;;一臺(tái)32K×72位模塊式存儲(chǔ)器[J];電子計(jì)算機(jī)動(dòng)態(tài);1980年10期

5 黃征,莊弈琪;一種新型存儲(chǔ)器件—磁電存儲(chǔ)器[J];國(guó)外電子元器件;2004年04期

6 高宗義;一種新型存儲(chǔ)器件—磁電存儲(chǔ)器[J];安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年04期

7 劉欣;姬濯宇;劉明;商立偉;李冬梅;代月花;;有機(jī)非揮發(fā)性存儲(chǔ)器的研究進(jìn)展[J];科學(xué)通報(bào);2011年27期

8 姚建楠,季科夫,吳金,黃晶生,劉凡;基于SRAM高速靈敏放大器的分析與設(shè)計(jì)[J];電子器件;2005年03期

9 孫勁鵬,王太宏;單電子存儲(chǔ)器[J];微納電子技術(shù);2002年08期

10 楊波,王躍科,楊俊,邢克飛;ADSP-BF535存儲(chǔ)器的分級(jí)管理機(jī)制及其性能評(píng)估[J];電子器件;2003年04期

相關(guān)會(huì)議論文 前1條

1 謝遠(yuǎn)江;王達(dá);胡瑜;李曉維;;基于內(nèi)容可尋址存儲(chǔ)器的存儲(chǔ)器內(nèi)建自修復(fù)方法[A];第五屆中國(guó)測(cè)試學(xué)術(shù)會(huì)議論文集[C];2008年

相關(guān)重要報(bào)紙文章 前1條

1 重慶 葉兆利;檢修讀碟出錯(cuò)機(jī)的教訓(xùn)[N];電子報(bào);2004年

相關(guān)博士學(xué)位論文 前10條

1 趙曉寧;碳基阻變存儲(chǔ)器導(dǎo)電通道調(diào)控及其機(jī)理研究[D];東北師范大學(xué);2016年

2 姜丹丹;硅納米晶存儲(chǔ)器可靠性研究[D];安徽大學(xué);2012年

3 陳超;新型阻變存儲(chǔ)器材料及其電阻轉(zhuǎn)變機(jī)理研究[D];清華大學(xué);2013年

4 李穎_";基于二元金屬氧化物阻變存儲(chǔ)器的研究[D];蘭州大學(xué);2011年

5 金林;電荷俘獲型存儲(chǔ)器阻擋層的研究[D];安徽大學(xué);2012年

6 凌云;用于相變存儲(chǔ)器的硫系化合物及器件研究[D];復(fù)旦大學(xué);2006年

7 楊金;非揮發(fā)性阻變存儲(chǔ)器阻變機(jī)理及性能研究[D];安徽大學(xué);2014年

8 謝宏偉;二元過(guò)渡金屬氧化物的阻變存儲(chǔ)器研究[D];蘭州大學(xué);2013年

9 章聞奇;幾種微電子材料的制備、表征與性能研究[D];南京大學(xué);2011年

10 湯振杰;納米晶及納米疊層基電荷俘獲型存儲(chǔ)器的研究[D];南京大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 李夢(mèng)瑤;基于二氧化鈦薄膜的阻變存儲(chǔ)器研究[D];東北師范大學(xué);2015年

2 舒景坤;基于調(diào)節(jié)存儲(chǔ)功能層的非易失性有機(jī)場(chǎng)效應(yīng)晶體管存儲(chǔ)器的研究[D];南京郵電大學(xué);2016年

3 汪家余;基于第一性原理的電荷俘獲存儲(chǔ)器的特性研究[D];安徽大學(xué);2015年

4 張焱;水下航行器中多通道采編存儲(chǔ)器的研制[D];中北大學(xué);2015年

5 顧晶晶;金屬氧化物阻變存儲(chǔ)器性能提升的方法和機(jī)理研究[D];復(fù)旦大學(xué);2011年

6 邰強(qiáng);有機(jī)場(chǎng)效應(yīng)晶體管存儲(chǔ)器的性能及表征方法研究[D];南京郵電大學(xué);2013年

7 郭姣姣;基于氧化鉿的阻變存儲(chǔ)器性能及機(jī)理的研究[D];復(fù)旦大學(xué);2012年

8 曾葉娟;分立電荷俘獲型存儲(chǔ)器模擬研究[D];安徽大學(xué);2012年

9 武長(zhǎng)強(qiáng);基于TiO_2柔性阻變存儲(chǔ)器性能研究[D];天津理工大學(xué);2013年

10 周立偉;基于氧化鈦?zhàn)枳兇鎯?chǔ)器的阻變機(jī)理分析[D];天津理工大學(xué);2015年



本文編號(hào):1516135

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/1516135.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)35451***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com