激光大氣傳輸中的相位奇點(diǎn)和光學(xué)渦旋及其演化特性研究
本文關(guān)鍵詞:激光大氣傳輸中的相位奇點(diǎn)和光學(xué)渦旋及其演化特性研究 出處:《山東師范大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 大氣光學(xué) 奇點(diǎn)光學(xué) 大氣傳輸 大氣湍流 相位奇點(diǎn) 光學(xué)渦旋
【摘要】:激光在湍流大氣中傳輸時(shí),光波的振幅和相位會(huì)發(fā)生隨機(jī)起伏,導(dǎo)致接收平面處光場(chǎng)的光強(qiáng)起伏及相位畸變等。在強(qiáng)湍流效應(yīng)條件下,畸變光場(chǎng)中會(huì)出現(xiàn)一些光強(qiáng)為零且相位不確定的點(diǎn),這些點(diǎn)被稱為相位奇點(diǎn)。相位奇點(diǎn)的存在給傳統(tǒng)自適應(yīng)光學(xué)系統(tǒng)的波前測(cè)量和校正帶來(lái)很大困難,從而給天文觀測(cè)、激光通訊、激光武器等眾多的工程應(yīng)用帶來(lái)挑戰(zhàn)。為了提高自適應(yīng)光學(xué)系統(tǒng)的校正能力,有必要對(duì)激光大氣傳輸中的相位奇點(diǎn)演化特性展開(kāi)研究。中心光強(qiáng)為零且攜帶有相位奇點(diǎn)的渦旋光束因其特有的性質(zhì)受到人們的廣泛關(guān)注。當(dāng)渦旋光束在湍流大氣中傳輸時(shí),傳輸介質(zhì)會(huì)引起光強(qiáng)起伏、光束擴(kuò)展以及光學(xué)渦旋的漂移等。另外,渦旋光束的拓?fù)浜煽梢宰鳛樾畔⒌妮d體用于自由空間光通信中。因此,有必要研究渦旋光束在湍流大氣中的光強(qiáng)分布、光束擴(kuò)展以及光學(xué)渦旋的演化特性等。本論文首先研究了激光在大氣中水平、斜程、上行和下行傳輸時(shí),受湍流擾動(dòng)的畸變光場(chǎng)中產(chǎn)生的相位奇點(diǎn)的演化特征;然后以拉蓋爾-高斯渦旋光束為例,系統(tǒng)研究了渦旋光束在湍流大氣中傳輸時(shí)的光強(qiáng)分布、光束擴(kuò)展、渦旋光束拓?fù)浜傻拇_定和光學(xué)渦旋的漂移等傳輸特性;最后簡(jiǎn)單探討了無(wú)衍射貝塞爾光束在湍流大氣中的束寬擴(kuò)展和相位奇點(diǎn)數(shù)密度的變化特性。主要研究?jī)?nèi)容和結(jié)論如下:1.數(shù)值模擬了激光在大氣中傳輸時(shí),受湍流擾動(dòng)的畸變光場(chǎng)中產(chǎn)生的相位奇點(diǎn)的演化特征。模擬結(jié)果顯示,相位奇點(diǎn)會(huì)成對(duì)產(chǎn)生;極性相反的相位奇點(diǎn)對(duì)會(huì)隨著波前向前傳播;相位奇點(diǎn)對(duì)的相對(duì)位置和間距在傳播過(guò)程中會(huì)發(fā)生變化;相位奇點(diǎn)也會(huì)成對(duì)地湮滅。2.數(shù)值模擬了激光在湍流大氣中水平傳輸時(shí)產(chǎn)生的相位奇點(diǎn)數(shù)密度與湍流效應(yīng)特征參數(shù)的關(guān)系,這些參數(shù)包括傳輸距離,湍流強(qiáng)度,激光波長(zhǎng)、湍流內(nèi)尺度和外尺度等。計(jì)算結(jié)果表明,當(dāng)其他傳輸條件一定時(shí),相位奇點(diǎn)數(shù)密度分別隨傳輸距離的增加和湍流強(qiáng)度的增強(qiáng)而增加,隨湍流內(nèi)尺度和激光波長(zhǎng)的增加而降低;而相位奇點(diǎn)數(shù)密度基本不受湍流外尺度的影響。3.數(shù)值模擬了激光在湍流大氣中水平傳輸時(shí)兩種傳輸條件下的相位奇點(diǎn)數(shù)密度的變化過(guò)程。一種是湍流較弱但傳輸距離很長(zhǎng);另一種是傳輸距離較短但湍流很強(qiáng),這兩種情況下均能產(chǎn)生強(qiáng)湍流效應(yīng)。結(jié)果表明,湍流強(qiáng)度對(duì)相位奇點(diǎn)數(shù)密度的影響要大于傳輸距離對(duì)相位奇點(diǎn)數(shù)密度的影響;不同傳輸條件下產(chǎn)生的相位奇點(diǎn)數(shù)密度隨Rytov指數(shù)的變化過(guò)程有所不同,但它們之間的關(guān)系比較符合Logistic統(tǒng)計(jì)公式。4.模擬了激光在湍流大氣中自地面向空中垂直上行傳輸時(shí)畸變光場(chǎng)中出現(xiàn)的相位奇點(diǎn)數(shù)密度隨傳輸高度的變化過(guò)程。在傳輸高度一定的情況下,主要模擬了兩種激光傳輸過(guò)程:一種是固定發(fā)射激光的波長(zhǎng),變化傳輸路徑中的湍流強(qiáng)度;另一種是固定傳輸路徑中的湍流強(qiáng)度,變化發(fā)射激光的波長(zhǎng)。結(jié)果表明,相位奇點(diǎn)數(shù)密度隨傳輸高度的增加其變化過(guò)程可以分成四個(gè)不同的區(qū)域;當(dāng)發(fā)射激光的波長(zhǎng)一定時(shí),近地面處的湍流強(qiáng)度不同對(duì)應(yīng)的相位奇點(diǎn)數(shù)密度達(dá)到峰值時(shí)的傳輸高度也是不同的,湍流越強(qiáng),相位奇點(diǎn)數(shù)密度的峰值越高,其對(duì)應(yīng)的傳輸高度卻越低;當(dāng)湍流強(qiáng)度的分布一定時(shí),畸變光場(chǎng)中的相位奇點(diǎn)數(shù)密度達(dá)到峰值時(shí)對(duì)應(yīng)的傳輸高度基本不受激光波長(zhǎng)的影響。另外,通過(guò)對(duì)模擬結(jié)果的曲線擬合發(fā)現(xiàn),不同條件下的相位奇點(diǎn)數(shù)密度隨傳輸高度的變化關(guān)系非常類(lèi)似于黑體輻射公式。5.模擬了激光在湍流大氣中自地面向空中斜程傳輸時(shí),相位奇點(diǎn)數(shù)密度的變化特征。結(jié)果表明,斜程傳輸時(shí)的相位奇點(diǎn)數(shù)密度隨傳輸距離的變化過(guò)程非常類(lèi)似于上行傳輸時(shí)相位奇點(diǎn)數(shù)密度隨傳輸高度的變化過(guò)程;固定近地面處的湍流強(qiáng)度,當(dāng)傳輸距離一定時(shí),光束的發(fā)射天頂角越大,畸變光場(chǎng)中出現(xiàn)的相位奇點(diǎn)數(shù)密度越大且相位奇點(diǎn)數(shù)密度達(dá)到極大值時(shí)對(duì)應(yīng)的傳輸距離越長(zhǎng);當(dāng)發(fā)射天頂角和傳輸距離一定時(shí),近地面處的湍流強(qiáng)度越強(qiáng),畸變光場(chǎng)中產(chǎn)生的相位奇點(diǎn)數(shù)密度越大。6.模擬了激光在湍流大氣中自空中某一高度垂直下行傳輸至地面時(shí),畸變光場(chǎng)中產(chǎn)生的相位奇點(diǎn)數(shù)密度的變化特征。結(jié)果表明,光源位置距離地面越高,在較高位置處的畸變光場(chǎng)中就會(huì)有相位奇點(diǎn)產(chǎn)生,且到達(dá)地平面處時(shí)的畸變光場(chǎng)中產(chǎn)生的相位奇點(diǎn)數(shù)密度越大;相位奇點(diǎn)數(shù)密度隨高度的降低而單調(diào)增加且在接近地平面處達(dá)到最大值。7.以拉蓋爾—高斯(LG)光束為例,模擬了渦旋光束在湍流大氣中傳輸時(shí)在垂直于傳輸方向的平面內(nèi)的光強(qiáng)分布。結(jié)果表明:當(dāng)渦旋光束在湍流大氣中傳輸時(shí),光強(qiáng)由最初的中空光束演變?yōu)槠巾敼馐?并最終在遠(yuǎn)場(chǎng)演變?yōu)楦咚构馐9鈴?qiáng)廓線的演變過(guò)程以及相位奇異性的消失與傳輸距離、湍流強(qiáng)弱、湍流外尺度、渦旋光束拓?fù)浜蓴?shù)、光束的束腰寬度以及光束的波長(zhǎng)有關(guān),而與湍流的內(nèi)尺度無(wú)關(guān)。對(duì)于同一渦旋光束,傳輸距離越遠(yuǎn)、湍流越強(qiáng)以及湍流外尺度越大,光強(qiáng)分布受到的影響越大。對(duì)于不同的渦旋光束,拓?fù)浜蓴?shù)越高、束腰越窄以及波長(zhǎng)越長(zhǎng),光強(qiáng)分布受到的影響越小,在湍流大氣中越易于保持其原有的光強(qiáng)和相位分布特性。8.數(shù)值模擬了大氣湍流對(duì)渦旋光束束寬擴(kuò)展的影響。結(jié)果表明:傳輸距離越長(zhǎng)或湍流越強(qiáng),渦旋光束在湍流大氣中傳輸時(shí)的束寬擴(kuò)展受湍流的影響越大;渦旋光束的拓?fù)浜蓴?shù)越高、光束的束腰越小或光波的波長(zhǎng)越長(zhǎng),束寬擴(kuò)展受大氣湍流的影響反而越小;隨著湍流內(nèi)尺度的減小或湍流外尺度的增加,大氣湍流對(duì)光束擴(kuò)展的影響會(huì)有所增加,但影響幅度相對(duì)較小。另外,還比較了渦旋光束和普通高斯光束因湍流引起的光束擴(kuò)展的差異。結(jié)果表明大氣湍流對(duì)普通高斯光束束寬擴(kuò)展的影響要大于對(duì)渦旋光束束寬擴(kuò)展的影響。9.通過(guò)數(shù)值分析接收面內(nèi)相位奇點(diǎn)拓?fù)浜傻拇鷶?shù)和(簡(jiǎn)稱為AS-PS),得出AS-PS近似等于入射渦旋光束拓?fù)浜傻慕Y(jié)論。提出了一種在湍流大氣中確定渦旋光束拓?fù)浜傻姆椒ā辔黄纥c(diǎn)代數(shù)和法。該方法可以有效的消除湍流的影響并減小確定拓?fù)浜傻恼`差。研究了傳輸參量、光束參量以及探測(cè)系統(tǒng)的口徑等對(duì)確定AS-PS的影響。結(jié)果表明:渦旋光束在湍流大氣中的傳輸距離越短、湍流強(qiáng)度越弱、入射渦旋光束的拓?fù)浜稍降?利用該方法確定渦旋光束拓?fù)浜傻臉?biāo)準(zhǔn)偏差越小;合理選擇渦旋光束的束腰也會(huì)增加該方法的準(zhǔn)確性;探測(cè)口徑近似等于渦旋光束傳輸至探測(cè)面上的主光斑尺寸時(shí),相位奇點(diǎn)代數(shù)和與入射渦旋光束拓?fù)浜傻南鄬?duì)誤差最小,該結(jié)論可以給探測(cè)器口徑的定量設(shè)計(jì)提供一定的參考依據(jù)。10.通過(guò)模擬光學(xué)渦旋在接收面的不同位置出現(xiàn)的頻次研究了湍流大氣中光學(xué)渦旋的漂移特性。由模擬結(jié)果可知,光學(xué)渦旋在接收面的不同位置出現(xiàn)的頻次或概率滿足高斯分布。隨著傳輸距離的增加、湍流的增強(qiáng)或入射渦旋光束拓?fù)浜傻脑黾?光學(xué)渦旋位置的統(tǒng)計(jì)特性不再滿足高斯分布。另外,適當(dāng)選擇入射渦旋光束的束腰會(huì)減小光學(xué)渦旋的漂移。以上這些結(jié)論可以為渦旋光束在自由空間光通訊中的應(yīng)用提供一定的參考依據(jù)。11.初步探討了貝塞爾光束在湍流大氣中傳輸時(shí)引起的束寬擴(kuò)展和相位奇點(diǎn)數(shù)密度的變化特性。結(jié)果表明,與零階貝塞爾光束和零階貝塞爾—高斯光束相比,貝塞爾—高斯渦旋光束由大氣湍流引起的束寬擴(kuò)展程度最小且在一定條件自身所攜帶的光學(xué)渦旋基本不受湍流的影響,即貝塞爾渦旋光束更適用于自由空間光通信中信息的載體。
[Abstract]:Laser propagation in turbulent atmosphere, the amplitude and phase of light will lead to random fluctuations, receiving plane light field intensity fluctuation and phase distortion. In effect under the condition of strong turbulence, there will be some distortion intensity is zero and phase uncertain point light field, these points are called phase singularities. There is a phase singularity which brings great difficulties to the traditional adaptive optics wavefront measurement and correction to the astronomical observations, laser communication, laser weapon engineering and many other challenges. In order to improve the correction capability of adaptive optical system, it is necessary on the evolution properties of phase singularities of laser transmission in the atmosphere is studied. The intensity of the vortex center beam zero and carrying phase singularities have attracted extensive attention due to its unique properties. When the vortex beam propagation in turbulent atmosphere, the transmission medium will cause the intensity fluctuation Well, the beam spreading optical vortex drift. In addition, the topological charge of vortex beam can be used as the carrier of information for free space optical communication. Therefore, it is necessary to intensity distribution in the turbulent atmosphere of vortex beam, beam propagation and optical vortex evolution characteristics. This paper studied the laser level in the atmosphere in the slant, the uplink and downlink transmission, the evolution characteristics of light field distortion in phase singularities by turbulence perturbation; then the Laguerre Gauss vortex beam as an example, the light intensity distribution of vortex beams in atmospheric turbulence is studied systematically on the beam spreading, transmission characteristics and determine the topology of optical vortex vortex beam bearing the drift; finally discusses the characteristics of non diffraction Bessel beam in turbulent atmosphere beam width extension and phase number of singular points density. The main research contents and conclusions are as follows 1.: the numerical simulation of laser propagation in atmosphere, the evolution characteristics of light field distortion in phase singularities by turbulence disturbance. The simulation results show that the phase singularities will be produced in pairs; the opposite polarity of phase singularities with wavefront propagates; phase singularities of the relative position and distance change in communication in the process of relationship; phase singularities will pair annihilation.2. numerical simulation of the laser generated in a turbulent atmosphere, the odd number phase density and turbulence parameters, these parameters include the transmission distance, turbulence intensity, laser wavelength, turbulence inner scale and outer scale. The calculation results show that when the other transmission conditions when a certain number of singular points respectively with increasing phase density and turbulence intensity of the transmission distance increased, and decreased with increasing turbulence inner scale and laser wavelength; and the number of dense phase singularities The degree is not affected by the outer scale of turbulence numerical simulation of the effect of.3. laser in horizontal turbulent atmosphere, changes of two kinds of transmission under the condition of the phase number of singular points density. One is the weak turbulence but the transmission distance is very long; the other is a short transmission distance but the turbulence is very strong, these two kinds of situations can produce strong turbulence effect. The results show that the influence of turbulence intensity on the phase density is greater than the number of singular points affect the transmission distance of the phase change process of the odd number density; different transmission conditions of phase number of singular points density with Rytov index is different, but the relationship between them is consistent with the Logistic statistical formula.4. to simulate the change with the height of the process of laser transmission in atmospheric turbulence from the ground to the air vertical upward distortion in the light field transmission phase. When the number of singular points density transmission height, main mode The two laser transmission process: one is the fixed laser wavelength, the turbulence intensity change of the transmission path; the other is a fixed transmission path in turbulence intensity, changes in emission wavelength of the laser. The results show that the phase number of singular points density with the increase of the height of the transmission process can be divided into four different when the wavelength of the laser emission region; when the transmission of near ground surface turbulence intensity corresponding to the different phase of odd points density peak height is different, the stronger the turbulence is, the peak phase number of singular points density is higher, the corresponding transmission height is lower; when the turbulence intensity distribution at the corresponding transmission in distorted optical field phase singular points density peak height was not affected by the wavelength of the laser. In addition, the curve fitting of the simulation results showed that under different conditions of phase singular points density With the change of the height of the transmission relationship is very similar to the blackbody radiation formula.5. simulation of laser beam propagation in turbulent atmosphere from the ground to the air oblique propagation, phase change characteristics of odd points density. The results show that the oblique propagation of phase singular points density change with the transmission distance of the process is very similar to the uplink transmission phase odd the number density changes with the height of the transmission process; the turbulence intensity is fixed near the ground, when the transmission distance, the beam emission zenith angle increases, appear distorted optical field phase in the odd points greater density and phase singularity density reached the maximum when the corresponding transmission distance is longer; when the zenith angle of emission and the transmission distance, turbulence intensity near the ground surface is stronger, the distortion of light field phase in the number of singular points higher density.6. simulation of laser beam propagation in turbulent air from a vertical downward transmission To the ground when the number of singular points density variation of phase distortion in the light field. The results show that the position of the light source from the ground is higher in the high position of the distorted optical field will produce phase singularities, the distortion of phase singularities in the light field density and arrived at the plane of the larger phase; the odd points density with height decrease monotonously increased and near the ground plane reaches a maximum at.7. (LG) with Laguerre Gauss beam as an example, the simulation of the vortex beams in atmospheric turbulence intensity in the plane perpendicular to the direction of transmission in distribution. The results show that when the vortex beam propagating in turbulent atmosphere when the light intensity changes from the original hollow beam of flat topped beam, and eventually evolved into the Gauss beam in the far field. The evolution of intensity profile and the phase singularity and the disappearance of the transmission distance, turbulence intensity, turbulent outer scale vortex. Optical beam topological number, the beam waist width and beam wavelength, and has nothing to do with the inner scale of turbulence. For the same vortex beam, the transmission distance is far more turbulent intensity and turbulent outer scale is larger, the greater the effect of light intensity distribution. For different vortex beam, the topological charge of the high waist is narrow and the longer wavelength, the intensity distribution of the effect is small, easy to maintain its original intensity and phase distribution of.8. numerical influence of atmospheric turbulence on the vortex beam width spreading in a turbulent atmosphere were simulated. The results show that the transmission distance is longer or more strong turbulence, vortex beams propagating in in the turbulent atmosphere when the beam width is more affected by turbulence; topological charge of vortex beam with higher beam waists smaller or longer wavelength, the beam width extension affected by atmospheric turbulence decreases with the turbulence inner scale; Increase or the decrease of the outer scale of turbulence, the influence of atmospheric turbulence on the beam spreading will increase, but the influence is relatively small. In addition, also compared the difference of beam vortex beams and ordinary Gauss beam due to turbulence induced expansion. The results show that the influence of atmospheric turbulence on the ordinary Gauss beam width spreading is greater than the expansion of the vortex the beam width effect of.9. through numerical analysis of in-plane phase singularities receiving algebraic and topological charge (referred to as AS-PS), the AS-PS is approximately equal to the topological charge of the vortex beam incident. The conclusion presents a method of determining the topology in the atmospheric turbulence vortex beam bearing - phase singularities and algebraic method. This method can be effective to eliminate the effects of turbulence and reduce the error of determining the topological charge. The transmission parameters are investigated, and the effects of the beam parameters detection system to determine the diameter of AS-PS. The results show that the vortex The propagation distance in the turbulent atmosphere is shorter, the turbulence intensity is weaker, the topological charge of vortex beam incidence is low, determine the standard deviation of the topology of vortex beam bearing using this method; reasonable choice of vortex beam waist will also increase the accuracy of the method; detection aperture is approximately equal to the spot size of vortex beam transmitted to the main on the surface of the probe, and the relative error of phase singularities of algebraic and topological charge of the vortex beam incident is minimum, the conclusion can give the quantitative design of detector aperture and provided a reference for the.10. simulation of optical vortex research in receiving the different position of the frequency drift characteristics of the optical vortex in a turbulent atmosphere. From the simulation results the frequency, or probability of optical vortex in different position of the receiving surface satisfies Gauss distribution. With the increase of the transmission distance, enhanced or incident optical vortex turbulence Increase the beam topological charge, the statistical properties of the optical vortex position no longer satisfies Gauss distribution. In addition, will reduce the incidence of optical vortex vortex beam waist appropriate selection drift. These conclusions can be used as vortex beams in free space optical communication to provide a reference for.11. discussed the characteristic changes caused by Bessel beam transmission in the turbulent atmosphere when the beam width extension and phase number of singular points density. The results show that, compared with the zero order Bessel beam and zero order Bessel Gauss beams, Bessel - Gauss vortex beams by atmospheric turbulence caused by the beam width of the optical vortex and its extended degree minimum carried under certain conditions is not affected by turbulence the carrier, namely Bessel vortex beam is more suitable for the information of free space optical communication.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN24
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳國(guó)維;三次系統(tǒng)指標(biāo)為正的奇點(diǎn)個(gè)數(shù)[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1986年03期
2 湛墾華;孟憲俊;張強(qiáng);;奇點(diǎn)與系統(tǒng)自組織[J];上海社會(huì)科學(xué)院學(xué)術(shù)季刊;1989年04期
3 韓玉良;一類(lèi)三次系統(tǒng)的細(xì)奇點(diǎn)[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);1999年02期
4 宛風(fēng);;技術(shù)奇點(diǎn) 是否也是人類(lèi)的終點(diǎn)[J];創(chuàng)新科技;2014年07期
5 米凡;;奇點(diǎn)是宇宙的起源嗎?[J];大科技(科學(xué)之迷);2006年08期
6 張劍峰,謝向東;平面有界三次系統(tǒng)有限奇點(diǎn)分布舉例[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2001年02期
7 張歷卓,趙梅春;一類(lèi)四次系統(tǒng)奇點(diǎn)的中心—焦點(diǎn)判定[J];貴州大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期
8 肖敏;具特定奇點(diǎn)分布的一個(gè)三次系統(tǒng)[J];南京師大學(xué)報(bào)(自然科學(xué)版);2001年02期
9 楊清華;一類(lèi)三次系統(tǒng)的奇點(diǎn)量問(wèn)題[J];韶關(guān)學(xué)院學(xué)報(bào)(自然科學(xué)版);2001年09期
10 劉銳寬;雅可比型系統(tǒng)奇點(diǎn)穩(wěn)定性的判斷[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年06期
相關(guān)會(huì)議論文 前3條
1 傅小明;;球差對(duì)光學(xué)奇點(diǎn)及其附近相位分布的影響[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
2 張華;呂志詠;;應(yīng)用PIV研究角區(qū)三維分離的附著奇點(diǎn)結(jié)構(gòu)[A];第十一屆全國(guó)分離流·渦運(yùn)動(dòng)和流動(dòng)控制會(huì)議論文選集[C];2006年
3 高高;;自由面勢(shì)流計(jì)算中流體域外奇點(diǎn)分布的穩(wěn)定性分析[A];第十三屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];1999年
相關(guān)重要報(bào)紙文章 前7條
1 高璇 俞悅 編譯;奇點(diǎn)大學(xué)[N];中國(guó)計(jì)算機(jī)報(bào);2009年
2 記者 毛磊;硅谷將建“奇點(diǎn)大學(xué)”,專門(mén)培養(yǎng)未來(lái)領(lǐng)軍人物?[N];新華每日電訊;2009年
3 記者毛磊;美國(guó)硅谷將設(shè)“奇點(diǎn)大學(xué)”[N];經(jīng)濟(jì)參考報(bào);2009年
4 仵鳳鳴;解讀“時(shí)間的開(kāi)始與終結(jié)是什么”[N];科技日?qǐng)?bào);2008年
5 鈕衛(wèi)星(上海交通大學(xué)科學(xué)史與科學(xué)哲學(xué)系);越過(guò)“視界” 探尋“奇點(diǎn)”[N];中國(guó)圖書(shū)商報(bào);2002年
6 記者 張巍巍;Google和NASA合辦奇點(diǎn)大學(xué)[N];科技日?qǐng)?bào);2009年
7 甘易;可稱為邏輯存在主義的一種新哲學(xué)[N];中國(guó)郵政報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 葛筱璐;激光大氣傳輸中的相位奇點(diǎn)和光學(xué)渦旋及其演化特性研究[D];山東師范大學(xué);2016年
2 唐異壘;退化奇點(diǎn)的廣義正常區(qū)域判別法及有關(guān)分岔[D];四川大學(xué);2005年
3 黃德青;幾類(lèi)生物動(dòng)力系統(tǒng)的定性分析及分岔研究[D];四川大學(xué);2007年
4 劉普生;相干和相關(guān)奇點(diǎn)光學(xué)效應(yīng)研究[D];四川大學(xué);2007年
5 肖萍;復(fù)平面多項(xiàng)式共振微分系統(tǒng)的奇點(diǎn)量與可積性條件[D];中南大學(xué);2005年
6 李歡歡;平衡對(duì)與相對(duì)奇點(diǎn)范疇[D];南京大學(xué);2015年
7 胡曉文;曲面奇點(diǎn)的crepant解消猜想[D];清華大學(xué);2013年
8 蘭輝;一般2維循環(huán)超曲面奇點(diǎn)的Durfee猜想及其相關(guān)問(wèn)題[D];華東師范大學(xué);2002年
9 王繼華;幾類(lèi)具有退化奇點(diǎn)的平面可積系統(tǒng)的擾動(dòng)[D];上海交通大學(xué);2012年
10 劉海明;子流形的勒讓德對(duì)偶及其奇點(diǎn)分類(lèi)[D];東北師范大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 傅道榕;具有三階細(xì)奇點(diǎn)的二次微分系統(tǒng)的全局結(jié)構(gòu)和分支曲線[D];福建師范大學(xué);2015年
2 張懿;帶奇點(diǎn)的Moser-Trudinger不等式與相關(guān)極值問(wèn)題[D];上海交通大學(xué);2015年
3 晉海波;構(gòu)造奇點(diǎn)范疇的粘合[D];華東師范大學(xué);2016年
4 鄭承民;高次奇點(diǎn)的定性分析與指數(shù)計(jì)算[D];新疆師范大學(xué);2004年
5 王偉;二元邊界奇點(diǎn)的識(shí)別與有限決定性[D];中南大學(xué);2006年
6 高金武;平面系統(tǒng)退化奇點(diǎn)的單值性問(wèn)題研究[D];浙江理工大學(xué);2013年
7 杜飛飛;平面系統(tǒng)退化奇點(diǎn)的穩(wěn)定性問(wèn)題研究[D];浙江理工大學(xué);2013年
8 李鑫;幾類(lèi)復(fù)多項(xiàng)式微分自治系統(tǒng)的奇點(diǎn)量與可積性條件[D];湖南大學(xué);2012年
9 李靜;奇點(diǎn)的分析與應(yīng)用[D];長(zhǎng)江大學(xué);2014年
10 張通;光滑曲面上三次覆蓋奇點(diǎn)解消的基本閉鏈[D];華東師范大學(xué);2008年
,本文編號(hào):1360123
本文鏈接:http://www.sikaile.net/shoufeilunwen/xxkjbs/1360123.html