基于排序的圖像美學(xué)質(zhì)量評(píng)估
[Abstract]:Image aesthetic quality assessment is a hot research issue in computer vision field, and has great application prospect, which can be combined with many practical applications. Many related works define it as a classification problem, and use the "high quality" and "low quality" labels to describe the aesthetic quality of pictures, and combine the aesthetic features with the classification label learning classification model. Because the classification label is coarse-grained expression form and low practicability, this paper puts forward the relative ranking of aesthetic quality of fine-grained research. Although the classification model and regression model proposed by related work can also solve the task of aesthetic ranking, their sorting performance is poor because they only use the absolute aesthetic quality of pictures rather than the relative sort relation. Some work put forward the method of ranking prediction based on column ranking. However, in the process of training, the ratio 1) uses all possible sort relationships, but the comparison between pictures with great difference in content is not reasonable. 2) extracting predefined features as aesthetic features. However, this feature can not fully describe the aesthetic attributes of images. Aiming at the above problems, this paper first puts forward an aesthetic sorting scheme based on picture pair, constructs the image pair to reflect the sort relation in the training set, and takes it as the prediction model of sample training ranking, and improves the quality of the training in order to remove the noise. A reasonable picture pair screening strategy was used to filter the samples. In order to further improve the quality of samples, this paper proposes an image pair construction strategy based on image retrieval. Firstly, a content-based image retrieval system is built. According to the specific generation criteria, the query picture and the similar picture constitute a picture pair. In order to get rid of the limitation of predefined aesthetic characteristics, this paper proposes an aesthetic ranking scheme based on deep learning, builds a two-channel convolution neural network and designs the corresponding ranking loss layer, taking the image pair as the input. The network weight parameters are optimized with the order relation as the objective. In the process of testing, the sorting model calculates and outputs the relative aesthetic ranking score of the picture, and then sorts it, but the absolute value of the score is meaningless. In order to verify the validity of the proposed scheme, this paper carries out aesthetic sorting experiments in two large open datasets, CUHKPQ and AVA, and compares them with other schemes. The experimental results confirm the superiority of the proposed scheme in the task of aesthetic ranking.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周星璞;選擇價(jià)值工程改進(jìn)對(duì)象的動(dòng)態(tài)排序模型[J];上海機(jī)械學(xué)院學(xué)報(bào);1988年03期
2 王揚(yáng);黃亞樓;盧敏;龐曉東;謝茂強(qiáng);劉杰;;直接優(yōu)化性能指標(biāo)的多排序模型融合方法[J];計(jì)算機(jī)學(xué)報(bào);2014年08期
3 肖依永;常文兵;張人;;基于模擬退火算法的多節(jié)點(diǎn)訂單排序模型[J];計(jì)算機(jī)應(yīng)用研究;2009年02期
4 姜文志;劉濤;栗飛;;基于作戰(zhàn)輔助決策系統(tǒng)的目標(biāo)威脅評(píng)估排序模型[J];兵工自動(dòng)化;2010年06期
5 孫焰,李致中;單線區(qū)間列車(chē)最優(yōu)運(yùn)行次序的排序模型及解法[J];鐵道學(xué)報(bào);1993年01期
6 王俊田;陳騫;歐淵;董良東;劉普高;;基于檢測(cè)結(jié)果的數(shù)據(jù)質(zhì)量排序模型[J];兵工自動(dòng)化;2007年09期
7 姜濤;;病態(tài)信息修正中的建議值排序模型研究[J];科學(xué)技術(shù)與工程;2007年22期
8 潘皖印;序分值綜合排序模型的研究[J];科學(xué)管理研究;1998年01期
9 柯昌英;基于JIT的一種混流生產(chǎn)排序模型[J];科技進(jìn)步與對(duì)策;2005年05期
10 趙志宏;楊琦;;科技論文質(zhì)量綜合排序模型[J];長(zhǎng)安大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2008年03期
相關(guān)會(huì)議論文 前3條
1 曹迎槐;;排序模型之TKW遞推算法研究[A];管理科學(xué)與系統(tǒng)科學(xué)研究新進(jìn)展——第7屆全國(guó)青年管理科學(xué)與系統(tǒng)科學(xué)學(xué)術(shù)會(huì)議論文集[C];2003年
2 李波;邱錫鵬;吳立德;;使用語(yǔ)法分析和統(tǒng)計(jì)方法構(gòu)建問(wèn)答系統(tǒng)的答案排序模型[A];第四屆全國(guó)信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議論文集(上)[C];2008年
3 吳強(qiáng);王同根;;Fuzzy—grey綜合評(píng)判排序模型[A];數(shù)學(xué)及其應(yīng)用文集——中南模糊數(shù)學(xué)和系統(tǒng)分會(huì)第三屆年會(huì)論文集(下卷)[C];1995年
相關(guān)博士學(xué)位論文 前2條
1 彭公孚;面向信息融合的句子排序若干關(guān)鍵技術(shù)研究[D];武漢大學(xué);2010年
2 程明寶;工件加工時(shí)間非恒定的排序模型研究[D];上海大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 張棟;蔬果類(lèi)商品的包裝作業(yè)排序模型研究[D];大連理工大學(xué);2015年
2 姬賽;兩類(lèi)半在線排序模型的算法性能分析[D];湖南師范大學(xué);2016年
3 張瀟瀟;航路交叉點(diǎn)容量?jī)?yōu)化和排序模型研究[D];中國(guó)民航大學(xué);2016年
4 李梁;面向不同對(duì)象的搜索引擎中的排序模型與性能評(píng)價(jià)[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
5 徐菁;點(diǎn)評(píng)類(lèi)社區(qū)高效評(píng)論挖掘研究[D];華南理工大學(xué);2016年
6 呂豪;基于排序的圖像美學(xué)質(zhì)量評(píng)估[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
7 翟倩;在線評(píng)論有用性排序模型研究[D];吉林大學(xué);2017年
8 錄嶺法;關(guān)于兩種現(xiàn)代排序模型的一些結(jié)果[D];鄭州大學(xué);2005年
9 郭文靜;兩階段模糊柔性流水車(chē)間排序模型及算法[D];南京理工大學(xué);2006年
10 張U,
本文編號(hào):2223589
本文鏈接:http://www.sikaile.net/shoufeilunwen/xixikjs/2223589.html