基于多源時空數據的城市社區(qū)宜居性動態(tài)評價方法研究
發(fā)布時間:2018-06-29 04:38
本文選題:社區(qū)宜居性 + 多源數據。 參考:《武漢大學》2017年碩士論文
【摘要】:隨著城市和經濟的迅速發(fā)展,城市居民越來越關注自身所處的居住環(huán)境,"宜居"成為當前時代的一個熱點。社區(qū)環(huán)境,是居民生存和發(fā)展的基礎,其優(yōu)劣不僅關系著居民的身心健康,也能映射出城市經濟發(fā)展和社區(qū)建設的水平。從社區(qū)的角度出發(fā),研究城市居民的居住適宜性,旨在科學地度量城市的宜居社區(qū)建設空間格局,為城市建設部門進行宜居社區(qū)建設提供決策依據,從而提高城市居民的生活質量。同時也為居民的日常生活以及買房、租房等提供幫助。文章結合了出租車軌跡、在線地圖POI以及地理國情普查等多源數據,基于分時段的社區(qū)交通熱點和社區(qū)活躍度構建城市社區(qū)宜居性動態(tài)評價方法,并對武漢市主城區(qū)的社區(qū)宜居性進行分析與評價,從時間和空間層面對其進行剖析。本文的主要研究工作如下:(1)基于空間均值的社區(qū)基本公共服務設施均衡性評價。文章鑒于當前基本公共服務設施指標量化方法的不足,參考地理學中空間均值重力模型方法,對其進行概念延伸,考慮從社區(qū)內部基本公共服務設施分布的均衡性角度來對指標進行科學的評價。通過計算社區(qū)范圍內指標的空間均值,求得其與社區(qū)邊界幾何中心的偏離距離,然后除以POI點個數消除個數影響。通過探尋指標在社區(qū)內部的均衡性分布,從更科學的角度來量化指標。(2)基于出租車數據的社區(qū)交通熱點提取。文章基于出租車軌跡數據,根據其載客狀態(tài)、速度等屬性信息提取出租車載客點和擁堵特征點,并利用基于時空聚類的ST-DBSCAN算法對提取的載客點和擁堵點進行聚類分析,獲取各個時間段城市的交通熱點區(qū)域,然后通過緩沖區(qū)分析進行指標量化,獲取各時間段居民出行便捷度相關指標數據。(3)基于土地利用混合度的社區(qū)活躍度分時段估計。文章考慮不同服務設施的活躍時間,利用學校、大型商場、農貿市場等不同類型的POI數據,根據他們的活躍時間基于土地利用混合度估計不同時段社區(qū)的活躍程度,具體土地利用混合度采用Hill Numbers的計算公式。通過對各時段社區(qū)活躍度的估計,獲取各個時間段居民生活舒適性相關指標數據。(4)城市社區(qū)宜居性動態(tài)評價方法構建及實現(xiàn)。文章考慮生活便利性、出行便捷度、居住安全性、環(huán)境舒適性四個方面,結合出租車軌跡、在線地圖POI、地理國情普查等多源數據,基于分時段的社區(qū)交通熱點和活躍程度構建城市社區(qū)宜居性動態(tài)評價方法。首先確定了武漢市社區(qū)宜居性評價指標體系,基于熵權法確定各級指標的權重,然后計算各時段武漢市主城區(qū)各社區(qū)的宜居指數,并進行時空分析。在此基礎上,通過熵權法確定各時段宜居指數的權重,計算各社區(qū)的宜居綜合指數,并進行綜合評價與分析。
[Abstract]:With the rapid development of city and economy, urban residents pay more and more attention to their living environment. Community environment is the basis of residents' survival and development. Its merits and demerits are not only related to the physical and mental health of residents, but also reflect the level of urban economic development and community construction. In order to scientifically measure the spatial pattern of urban livable community construction and provide the decision basis for the urban construction department to carry out livable community construction, this paper studies the habitability of urban residents from the perspective of community, and studies the habitability of urban residents in order to measure the spatial pattern of livable community construction scientifically. So as to improve the quality of life of urban residents. At the same time also for the daily life of residents and buy a house, rental and so on to provide assistance. Based on the multi-source data, such as taxi track, online map POI and geographical situation survey, this paper constructs a dynamic evaluation method for liveability of urban communities based on the community traffic hot spots and community activity. The community livability of Wuhan city is analyzed and evaluated, and analyzed from time and space. The main work of this paper is as follows: (1) the equilibrium evaluation of community basic public service facilities based on spatial mean. In view of the deficiency of the current quantification method of basic public service facilities, this paper extends the concept of spatial mean gravity model with reference to the method of geography. To evaluate the indicators scientifically from the perspective of equilibrium of distribution of basic public service facilities in the community. By calculating the spatial mean value of the index in the community, the deviation distance between the index and the geometric center of the community boundary is obtained, and then the number of POI points is divided to eliminate the influence of the number of points. By exploring the equilibrium distribution of indicators within the community, the paper quantifies the indicators from a more scientific point of view. (2) Community traffic hot spot extraction based on taxi data. Based on the taxi track data, the paper extracts the taxi passenger point and congestion feature point according to the attribute information such as the state and speed of the taxi, and uses ST-DBSCAN algorithm based on temporal and spatial clustering to cluster the extracted passenger and congestion points. The traffic hot spots of cities in each time period are obtained, and then the index is quantified by buffer analysis. (3) based on the mixed degree of land use, community activity is estimated by time division. The article takes into account the active time of different service facilities, using different types of POI data, such as schools, shopping malls, farmers' markets, and estimating the activity of communities at different periods of time based on their active time. The mixing degree of land use is calculated by Hill numbers. Based on the estimation of community activity in different periods, the relevant index data of residents' comfort in different periods are obtained. (4) the dynamic evaluation method of livability of urban communities is constructed and realized. The article considers the convenience of life, the degree of travel convenience, the safety of living, the comfort of the environment, and the multi-source data, such as taxi track, online map POI, geographical situation survey, etc. Based on the community traffic hot spot and active degree, the dynamic evaluation method of livability of urban community is constructed. Firstly, the evaluation index system of community livability in Wuhan is determined, and the weight of indexes at all levels is determined based on entropy weight method, then the livable index of communities in main urban area of Wuhan is calculated in each time period, and the space-time analysis is carried out. On this basis, the weight of livable index in each time period is determined by entropy weight method, and the comprehensive index of livable life in each community is calculated, and the comprehensive evaluation and analysis are carried out.
【學位授予單位】:武漢大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:D669.3;P208
【共引文獻】
相關期刊論文 前10條
1 李海林;萬校基;;基于簇中心群的時間序列數據分類方法[J];電子科技大學學報;2017年03期
2 呂紅偉;王士同;;預測子空間聚類的聚類集成算法[J];小型微型計算機系統(tǒng);2017年04期
3 張建輝;王會青;孫宏偉;郭芷榕;白瑩瑩;;基于二分迭代SAX的時序相似性度量算法[J];計算機科學;2017年01期
4 白勇;孫曉雯;秦f ;孫子文;;基于SVD特征降維和支持向量機的跌倒檢測算法[J];計算機應用與軟件;2017年01期
5 多超;;基于正交多項式回歸分析與ICA結合運用的時序聚類[J];統(tǒng)計與管理;2016年12期
6 陳海燕;劉晨暉;孫博;;時間序列數據挖掘的相似性度量綜述[J];控制與決策;2017年01期
7 韓國文;黃笑言;趙剛;;中美德國債收益率曲線的共同影響因素[J];金融論壇;2016年10期
8 安玲玲;于雷;;基于高斯混合模型的心音信號識別[J];吉林大學學報(理學版);2016年05期
9 李進東;王韜;吳楊;雷東;;基于主成分分析和學習矢量量化的會話初始協(xié)議識別研究[J];計算機工程;2016年06期
10 李海林;梁葉;;分段聚合近似和數值導數的動態(tài)時間彎曲方法[J];智能系統(tǒng)學報;2016年02期
,本文編號:2080885
本文鏈接:http://www.sikaile.net/shoufeilunwen/xixikjs/2080885.html
最近更新
教材專著