天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于機器視覺的飛機鉚釘尺寸測量和缺陷檢測系統(tǒng)的研究

發(fā)布時間:2018-04-29 22:39

  本文選題:機器視覺 + 飛機鉚釘。 參考:《陜西科技大學(xué)》2017年碩士論文


【摘要】:隨著我國飛機制造業(yè)的快速發(fā)展,飛機鉚釘作為飛機裝配的必要零件被大量需求。為了保證飛機鉚釘?shù)馁|(zhì)量,并區(qū)分產(chǎn)品的規(guī)格等級,需要運用一定的技術(shù)手段對鉚釘產(chǎn)品進行尺寸測量和表面缺陷檢測。然而目前大多飛機鉚釘?shù)纳a(chǎn)廠家仍然使用傳統(tǒng)的人工檢測方法對產(chǎn)品進行檢測,該檢測方法存在著檢測效率低、檢測成本高的問題,已經(jīng)不能滿足現(xiàn)代工業(yè)快速、精密和穩(wěn)定的測量及檢測要求。基于機器視覺的工業(yè)檢測技術(shù)因其具有非接觸、在線檢測、實時分析和判斷的特點以及速度快、精度高、效率高的優(yōu)點,目前已廣泛應(yīng)用于現(xiàn)代工業(yè)大生產(chǎn)的檢測領(lǐng)域。本文將飛機鉚釘作為檢測對象,研制了一種基于機器視覺的飛機鉚釘尺寸測量和表面缺陷檢測系統(tǒng)。通過分析飛機鉚釘?shù)男螤罱Y(jié)構(gòu)及表面缺陷的特征信息,對檢測系統(tǒng)的硬件部分進行選型和設(shè)計,對飛機鉚釘尺寸測量算法和表面缺陷檢測算法進行研究,并對檢測系統(tǒng)的軟件部分進行了設(shè)計。本文的研究工作主要包括以下幾個部分:(1)根據(jù)鉚釘生產(chǎn)企業(yè)提出的對飛機鉚釘檢測的性能指標(biāo),結(jié)合工藝條件,設(shè)計了一個包括運動控制部分、圖像采集和處理部分以及光源照明系統(tǒng)的機器視覺檢測的硬件系統(tǒng)。選擇合適的工業(yè)相機和光學(xué)鏡頭,對光源照明系統(tǒng)進行選型和設(shè)計,并對光源照明系統(tǒng)進行優(yōu)化,以保證待測鉚釘圖像的質(zhì)量。(2)對飛機鉚釘尺寸測量算法進行了研究。根據(jù)飛機鉚釘?shù)臏y量需要及鉚釘特征,確定的算法流程為:首先對原始鉚釘圖像進行預(yù)處理并對存在畸變的鉚釘圖像進行畸變補償,確定鉚釘圖像的邊緣圖像,最后對鉚釘圖像的圓形部分采用最小二乘法擬合圓的方法進行測量,同時對鉚釘圖像的線型特征采用Hough變換的方法確定鉚釘?shù)某叽鐓?shù)。(3)對飛機鉚釘表面缺陷檢測算法進行了研究。表面缺陷檢測算法主要由缺陷補償算法和缺陷判斷算法組成。缺陷補償算法采用稀疏分解和聚類分析的方法獲得飛機鉚釘?shù)哪0鍒D像,與待測飛機鉚釘進行差分運算后提取鉚釘缺陷圖像,缺陷判斷算法為根據(jù)鉚釘缺陷圖像的幾何特征和形狀特征判斷缺陷的類型。(4)在Visual Studio 2010環(huán)境下,結(jié)合MFC和Open CV庫實現(xiàn)了軟件系統(tǒng)的設(shè)計。運用MFC設(shè)計友好的人機交互界面,采用模塊化編程的思想,利用Open CV軟件實現(xiàn)了飛機鉚釘尺寸測量算法和表面缺陷檢測算法,并通過數(shù)據(jù)庫對飛機鉚釘尺寸測量和缺陷檢測的信息進行保存。最后,在完成系統(tǒng)構(gòu)建、算法設(shè)計和軟件實現(xiàn)的基礎(chǔ)上,通過實驗對本文所設(shè)計的檢測系統(tǒng)的效果進行了驗證。實驗結(jié)果表明,本文所設(shè)計的基于機器視覺的飛機鉚釘尺寸測量和表面缺陷檢測系統(tǒng)能夠?qū)崿F(xiàn)飛機鉚釘?shù)母呔葴y量以及準(zhǔn)確的缺陷判斷,滿足各方面的檢測要求。
[Abstract]:With the rapid development of China's aircraft manufacturing industry, aircraft rivets are required as necessary parts for aircraft assembly. In order to ensure the quality of aircraft rivets and distinguish the grade of products, it is necessary to use certain technical means to measure the size and detect the surface defects of the rivets. However, at present, most manufacturers of aircraft rivets still use the traditional manual testing method to detect the products. The detection method has the problems of low efficiency and high cost, and can not meet the rapid development of modern industry. Precise and stable measurement and testing requirements. The industrial detection technology based on machine vision has been widely used in the field of modern industrial production because of its characteristics of non-contact, on-line detection, real-time analysis and judgment, as well as the advantages of high speed, high precision and high efficiency. In this paper, an aircraft rivet size measurement and surface defect detection system based on machine vision is developed. By analyzing the shape and structure of aircraft rivets and the characteristic information of surface defects, the hardware part of the detection system is selected and designed, and the algorithm of measuring the size of aircraft rivets and the algorithm of detecting surface defects are studied. And the software part of the detection system is designed. The research work of this paper mainly includes the following parts: 1) according to the performance index of the rivet inspection proposed by the rivet manufacturing enterprise and combining with the technological conditions, a motion control part is designed. The part of image acquisition and processing and the hardware system of machine vision detection of light source lighting system. Selecting the appropriate industrial camera and optical lens, selecting and designing the lighting system of light source, and optimizing the lighting system of light source to ensure the quality of rivet image to be tested, the algorithm of measuring the size of aircraft rivet is studied. According to the measurement requirements and rivet characteristics of aircraft rivets, the algorithm flow is as follows: first, preprocess the original rivets image and compensate the distortion of the rivet image with distortion, and determine the edge image of the rivet image. Finally, the circular part of the rivet image is measured by using the least square method to fit the circle. At the same time, the method of Hough transform is used to determine the size parameter of rivets, and the algorithm for detecting the surface defects of aircraft rivets is studied. The surface defect detection algorithm is mainly composed of defect compensation algorithm and defect judgment algorithm. The defect compensation algorithm uses sparse decomposition and clustering analysis to obtain the template image of the aircraft rivets, and then extracts the rivet defect image after differential operation with the aircraft rivet to be tested. The defect judgment algorithm is based on the geometric and shape features of rivets defect image to judge the type of defect. In Visual Studio 2010 environment, the software system is designed by combining MFC and Open CV library. Using MFC to design friendly man-machine interface, using the idea of modular programming, using Open CV software to realize the aircraft rivet size measurement algorithm and surface defect detection algorithm. The information of size measurement and defect detection of aircraft rivets is saved by database. Finally, on the basis of the system construction, algorithm design and software implementation, the effect of the detection system designed in this paper is verified by experiments. The experimental results show that the aircraft rivet size measurement and surface defect detection system based on machine vision can realize the high precision measurement and accurate defect judgment of aircraft rivets, and meet the requirements of all aspects of the detection.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V262.4;TP391.41

【參考文獻】

相關(guān)期刊論文 前10條

1 周強;杜f^盟;王志強;;基于多尺度冗余字典稀疏分解的紙病圖像背景補償方法[J];中國造紙;2016年11期

2 張飛;單忠德;聶軍剛;任永新;劉豐;;缸蓋圖像采集系統(tǒng)設(shè)計與圖像濾波算法研究[J];儀表技術(shù)與傳感器;2016年10期

3 喬兆亮;;基于非線性濾波的數(shù)字圖像降噪算法[J];數(shù)字技術(shù)與應(yīng)用;2016年06期

4 曾志強;祝錫晶;王俊元;李旭;林娣;;基于機器視覺的藥筒傳火孔可靠性測量方法研究[J];機械科學(xué)與技術(shù);2016年01期

5 李偉偉;王莉;張琳;劉進;;基于改進二叉樹支持向量機的多故障分類算法[J];探測與控制學(xué)報;2015年03期

6 張敏;金龍旭;李國寧;武奕楠;韓雙麗;;基于直線特征的攝像機鏡頭畸變標(biāo)定方法[J];光學(xué)學(xué)報;2015年06期

7 吳彬彬;湯勃;孔建益;王興東;;MAS小波的鋼板表面缺陷邊緣檢測的研究[J];機械設(shè)計與制造;2015年05期

8 馮斌;張富生;;密封螺母磁粉探傷方法[J];無損探傷;2015年01期

9 溫利民;鄒思思;呂鳳虎;;偏度系數(shù)和峰度系數(shù)的信度估計[J];統(tǒng)計與決策;2015年03期

10 周江;任錕;帥英琦;陳英豪;;基于機器視覺的磁鋼片缺陷檢測研究[J];機電工程;2014年12期

相關(guān)博士學(xué)位論文 前1條

1 張秀芝;基于計算機視覺的機械零件幾何量精密測量技術(shù)研究[D];吉林大學(xué);2009年

相關(guān)碩士學(xué)位論文 前8條

1 王志強;基于C++的紙病圖像數(shù)據(jù)的壓縮感知的研究[D];陜西科技大學(xué);2016年

2 宮振寧;基于機器視覺的生產(chǎn)線螺母裝配檢測技術(shù)研究[D];燕山大學(xué);2014年

3 王明躍;視覺在線零件尺寸測量方法研究[D];天津理工大學(xué);2014年

4 田冬鳳;飛機機身鉚接構(gòu)件疲勞性能研究[D];南京航空航天大學(xué);2013年

5 王凡;基于機器視覺的螺紋缺陷檢測技術(shù)研究和系統(tǒng)開發(fā)[D];電子科技大學(xué);2011年

6 高春霞;管軌運輸中央控制系統(tǒng)原理樣機軟件的設(shè)計與實現(xiàn)[D];北京交通大學(xué);2009年

7 楊彥景;攝像機標(biāo)定與畸變圖像矯正算法的設(shè)計與實現(xiàn)[D];東北大學(xué);2008年

8 盧麗燕;基于機器視覺的精密尺寸測量技術(shù)[D];中北大學(xué);2008年

,

本文編號:1821915

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/xixikjs/1821915.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶59541***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com