基于人工蜂群算法的支持向量機集成研究
本文關(guān)鍵詞: 人工蜂群算法 特征選擇 支持向量機 同步優(yōu)化 集成學習 出處:《湖北工業(yè)大學》2017年碩士論文 論文類型:學位論文
【摘要】:支持向量機(Support Vector Machine,SVM)是一種建立在統(tǒng)計學習理論基礎(chǔ)上適用于小樣本情況的機器學習技術(shù),已經(jīng)被廣泛地應用于模式識別各領(lǐng)域。SVM分類器的性能很大程度上受其自身參數(shù)和使用特征的影響,傳統(tǒng)方法是將參數(shù)尋優(yōu)問題和特征選擇問題進行分開處理,難以得到分類性能整體最優(yōu)的SVM,但是隨著優(yōu)化計算技術(shù)在模式識別領(lǐng)域中的廣泛應用,將參數(shù)尋優(yōu)和特征選擇問題進行同步優(yōu)化已變成了一種趨勢。另外,由于實際問題的復雜性,SVM的泛化能力也需要進一步提高。集成學習為提高分類系統(tǒng)的泛化能力提供了一條新途徑,它通過訓練和組合多個有差異的分類器,從而提高分類器的性能,已經(jīng)取得了較好的進展和成果,然而相關(guān)工作并未完善,值得進一步研究。從這一現(xiàn)狀出發(fā),本文主要研究了使用人工蜂群算法對支持向量機進行參數(shù)特征同步優(yōu)化和集成研究。首先研究了使用人工蜂群算法(Artificial Bee Colony Algorithm,ABC)進行特征選擇和支持向量機參數(shù)優(yōu)化。進而將SVM的參數(shù)尋優(yōu)問題和特征選擇問題視為最優(yōu)化問題同步處理,在提高SVM分類精度的同時盡可能選擇少的特征數(shù)目,獲得整體性能最優(yōu)的SVM參數(shù)和特征子集。為了進一步的提高SVM分類系統(tǒng)的泛化能力,在實現(xiàn)特征參數(shù)同步優(yōu)化的基礎(chǔ)上,再引進加權(quán)投票集成學習技術(shù),分別構(gòu)建若干個SVM分類器,在對每個SVM分類器進行學習后,得到若干個具有差異性的SVM分類器,并設(shè)置單個SVM分類器的集成投票權(quán)重為每個SVM分類器的分類準確率和總分類器數(shù)目的比值,將若干個具有差異性的SVM分類器采用加權(quán)投票規(guī)則的方式進行組合,以期能夠得到更優(yōu)的集成分類性能。為了驗證所提出方法的性能,利用部分UCI數(shù)據(jù)集進行實驗驗證,本文還將ABC算法與常用的遺傳算法和粒子群優(yōu)化算法進行了對比分析。實驗研究結(jié)果顯示,將其與遺傳算法和粒子群優(yōu)化算法相比,ABC算法在SVM分類器的優(yōu)化中具有更好的表現(xiàn);進一步,基于ABC-SVM的加權(quán)投票集成算法具有很好的自適應性和分類精度,能夠提高基本SVM分類器性能的同時選擇出更少的特征數(shù)目,并獲取整體性能最優(yōu)的SVM參數(shù)和特征子集。
[Abstract]:Support Vector Machine (SVM) is a machine learning technology based on statistical learning theory. The performance of SVM classifier has been widely used in various fields of pattern recognition. The performance of SVM classifier is greatly affected by its own parameters and usage features. The traditional method is to deal with the problem of parameter optimization and feature selection separately. It is difficult to obtain the SVM with overall optimal classification performance, but with the wide application of optimization computing technology in the field of pattern recognition, it has become a trend to synchronize parameter optimization and feature selection. Because of the complexity of practical problems, the generalization ability of SVM also needs to be further improved. Integrated learning provides a new way to improve the generalization ability of classification systems. In order to improve the performance of the classifier, good progress and achievements have been achieved, but the relevant work is not perfect, which is worthy of further study. This paper mainly studies the parameter synchronization optimization and ensemble research of support vector machine using artificial bee colony algorithm. Firstly, we study the feature selection and parameter optimization of support vector machine using artificial Bee Colony algorithm. Furthermore, the parameter optimization problem and the feature selection problem of SVM are regarded as the synchronization processing of the optimization problem. In order to improve the generalization ability of SVM classification system, we can improve the accuracy of SVM classification and select as few feature numbers as possible, and obtain the best SVM parameters and feature subsets. In order to improve the generalization ability of SVM classification system, we can realize the synchronization optimization of feature parameters. Then the weighted voting ensemble learning technique is introduced to construct several SVM classifiers respectively. After learning each SVM classifier, several SVM classifiers with differences are obtained. The integrated voting weight of a single SVM classifier is set as the ratio of the classification accuracy of each SVM classifier to the number of general classifiers, and several SVM classifiers with differences are combined by weighted voting rules. In order to verify the performance of the proposed method, some UCI data sets are used to verify the performance of the proposed method. The ABC algorithm is compared with the usual genetic algorithm and particle swarm optimization algorithm. The experimental results show that compared with the genetic algorithm and particle swarm optimization algorithm, the ABC algorithm has better performance in the optimization of SVM classifier. Furthermore, the weighted voting ensemble algorithm based on ABC-SVM has good adaptability and classification accuracy. It can improve the performance of the basic SVM classifier and select fewer features, and obtain the best SVM parameters and feature subsets.
【學位授予單位】:湖北工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 董明;;基于機器學習與圖像處理的目標Mark識別算法[J];計算機與數(shù)字工程;2016年12期
2 陳江;單桂軍;李正明;;基于支持向量機集成學習的網(wǎng)絡(luò)故障診斷方法[J];計算機測量與控制;2014年12期
3 劉培;杜培軍;譚琨;;一種基于集成學習和特征融合的遙感影像分類新方法[J];紅外與毫米波學報;2014年03期
4 譚愛平;陳浩;吳伯橋;;基于SVM的網(wǎng)絡(luò)入侵檢測集成學習算法[J];計算機科學;2014年02期
5 付忠良;;多標簽代價敏感分類集成學習算法[J];自動化學報;2014年06期
6 肖劍;周建中;李超順;王常青;張孝遠;肖漢;;基于混合蜂群算法特征參數(shù)同步優(yōu)化支持向量機的水電機組軸心軌跡識別方法研究[J];電力系統(tǒng)保護與控制;2013年21期
7 高偉;王中卿;李壽山;;基于集成學習的半監(jiān)督情感分類方法研究[J];中文信息學報;2013年03期
8 付忠良;;通用集成學習算法的構(gòu)造[J];計算機研究與發(fā)展;2013年04期
9 宋靜;;支持向量機的應用研究[J];電腦知識與技術(shù);2012年33期
10 楊威;付耀文;龍建乾;黎湘;;基于有限集統(tǒng)計學理論的目標跟蹤技術(shù)研究綜述[J];電子學報;2012年07期
相關(guān)碩士學位論文 前2條
1 卞桂龍;在線學習的集成分類器研究[D];浙江大學;2014年
2 曹彥;基于支持向量機的特征選擇及其集成方法的研究[D];鄭州大學;2010年
,本文編號:1543502
本文鏈接:http://www.sikaile.net/shoufeilunwen/xixikjs/1543502.html