基于改進(jìn)相關(guān)向量機的單繞組磁懸浮開關(guān)磁阻電機無位置傳感器控制研究
本文關(guān)鍵詞:基于改進(jìn)相關(guān)向量機的單繞組磁懸浮開關(guān)磁阻電機無位置傳感器控制研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 磁懸浮 開關(guān)磁阻電機 無位置傳感器 相關(guān)向量機 高速數(shù)字系統(tǒng)
【摘要】:高速磁懸浮開關(guān)磁阻電機(BSRM)是磁軸承和開關(guān)磁阻電機相結(jié)合的產(chǎn)物,具有簡單耐用、性能可靠、高功率密度、高容錯性等優(yōu)點,能夠很好地適應(yīng)高速、重載等各種惡劣環(huán)境,在飛輪儲能系統(tǒng)、多電/全電飛機、分布式發(fā)電系統(tǒng)、不間斷電源(UPS)、電動/混合動力驅(qū)動等應(yīng)用領(lǐng)域有著十分廣闊的前景。BSRM運行控制包含懸浮控制和旋轉(zhuǎn)控制兩個組成部分,而穩(wěn)定懸浮和可靠旋轉(zhuǎn)的前提在于轉(zhuǎn)子位移和位置的實時高精度檢測。獲得轉(zhuǎn)子位置信號的傳統(tǒng)方式是在電機上安裝位置傳感器,但位置傳感器的存在不僅降低了BSRM結(jié)構(gòu)簡單的優(yōu)勢,而且限制了電機固有高速性能的發(fā)揮。因此,探索新型的無位置傳感器技術(shù)是BSRM目前研究的重要方向,意義重大。本文以12/8三相單繞組磁懸浮開關(guān)磁阻電機(SWBSRM)作為研究對象,對電機數(shù)學(xué)模型構(gòu)建,無位置傳感器徑向位移自檢測,電機無位置傳感器運行控制和高速數(shù)字系統(tǒng)設(shè)計等方面進(jìn)行了研究。具體研究工作和相關(guān)成果如下:(1)分析了12/8極SWBSRM的結(jié)構(gòu)和工作原理,基于等效磁路法和虛位移法推導(dǎo)了電感矩陣和磁鏈方程,給出了電機轉(zhuǎn)矩和徑向懸浮力的數(shù)學(xué)模型,并利用Ansoft Maxwell 2D軟件驗證了所構(gòu)建模型的準(zhǔn)確性,為建立基于相關(guān)向量機的轉(zhuǎn)子徑向位移模型奠定基礎(chǔ)。(2)引入相關(guān)向量機(RVM),并采用差分進(jìn)化(DE)算法對RVM組合核函數(shù)參數(shù)進(jìn)行了優(yōu)化,推導(dǎo)基于改進(jìn)RVM的單繞組BSRM轉(zhuǎn)子位置模型。通過自檢測系統(tǒng)中檢測信號與位移信號的對比驗證基于改進(jìn)RVM無位移傳感器自檢測方法的可行性。(3)設(shè)計基于懸浮系統(tǒng)的魯棒PID控制器,并基于電流等效法提出了電機電流的控制算法,研究了SWBSRM無位置傳感器運行控制系統(tǒng),并通過Matlab/simulink進(jìn)行仿真驗證。仿真結(jié)果表明,所提出的控制策略對電機無位置傳感器運行有很好的控制效果,且系統(tǒng)響應(yīng)速度較快。(4)采用DSP為主控制器,結(jié)合FPGA系統(tǒng)集成度高,靈活可靠的優(yōu)點,構(gòu)建12/8極SWBSRM高速數(shù)字系統(tǒng);并設(shè)計了功率變換電路、電流電壓檢測電路和轉(zhuǎn)子位置檢測電路等硬件模塊,為接下來進(jìn)一步實驗做好了準(zhǔn)備。
[Abstract]:High speed switched reluctance motor (SRM) is the product of the combination of magnetic bearing and switched reluctance motor, which has the advantages of simple and durable, reliable performance, high power density, high fault tolerance and so on. Can well adapt to high speed, heavy load and other adverse environment, in the flywheel energy storage system, multi-electric / all-electric aircraft, distributed generation systems, uninterrupted power supply (ups). The application field of electric / hybrid power drive has a very broad prospect. BSRM operation control includes two parts: suspension control and rotation control. The premise of stable suspension and reliable rotation is real-time and high-precision detection of rotor displacement and position. The traditional way to obtain rotor position signal is to install position sensor on the motor. However, the existence of position sensor not only reduces the advantages of simple BSRM structure, but also limits the inherent high-speed performance of the motor. Exploring a new type of position sensorless technology is an important research direction of BSRM. In this paper, 12/8 three-phase single-winding switched reluctance motor (SRM) is taken as the research object. For the mathematical model of the motor, the position sensorless radial displacement self-detection. In this paper, the sensorless operation control of the motor and the design of high-speed digital system are studied. The specific research work and related results are as follows: 1) the structure and working principle of the 12/8 pole SWBSRM are analyzed. Based on the equivalent magnetic circuit method and the virtual displacement method, the inductance matrix and the flux chain equation are derived, and the mathematical models of the motor torque and radial suspension force are given. The veracity of the model is verified by Ansoft Maxwell 2D software. In order to establish the radial displacement model of rotor based on correlation vector machine (RVM), the correlation vector machine (RVM) is introduced, and the parameters of RVM combined kernel function are optimized by using differential evolution (DE) algorithm. The rotor position model of single winding BSRM based on improved RVM is derived. The feasibility of the improved RVM sensorless self-detection method is verified by comparing the detection signal with the displacement signal in the self-detection system. 3) robust PID controller based on suspension system is designed. Based on the current equivalent method, the control algorithm of motor current is proposed, and the position sensorless operation control system of SWBSRM is studied. The simulation results by Matlab/simulink show that the proposed control strategy has a good control effect on the sensorless operation of the motor. DSP is adopted as the main controller, and the high speed digital system of 12/8 pole SWBSRM is constructed by combining the advantages of high integration, flexibility and reliability of FPGA system. The hardware modules, such as power conversion circuit, current and voltage detection circuit and rotor position detection circuit, are designed to prepare for further experiments.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM352;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱志瑩;孫玉坤;張仰飛;周云紅;王正齊;;單繞組磁懸浮開關(guān)磁阻電機電磁分析與優(yōu)化設(shè)計[J];電機與控制應(yīng)用;2015年12期
2 朱志瑩;孫玉坤;李祖明;周云紅;王正齊;;單繞組磁懸浮開關(guān)磁阻電動機非線性解耦控制[J];微特電機;2015年10期
3 項倩雯;嵇小輔;孫玉坤;張新華;楊澤斌;;單繞組磁懸浮開關(guān)磁阻電機的原理與解耦控制[J];電機與控制學(xué)報;2012年11期
4 莊錚;鄧智泉;曹鑫;趙麗丹;;無軸承開關(guān)磁阻全周期發(fā)電機輸出功率的建模與優(yōu)化控制[J];電工技術(shù)學(xué)報;2012年07期
5 周云紅;孫玉坤;嵇小輔;黃永紅;;磁懸浮開關(guān)磁阻電機徑向位移自檢測[J];中國電機工程學(xué)報;2012年06期
6 張倩影;鄧智泉;楊艷;;無軸承開關(guān)磁阻電機轉(zhuǎn)子質(zhì)量偏心補償控制[J];中國電機工程學(xué)報;2011年21期
7 項倩雯;孫玉坤;張新華;;磁懸浮開關(guān)磁阻電機建模與參數(shù)優(yōu)化設(shè)計[J];電機與控制學(xué)報;2011年04期
8 楊鋼;鄧智泉;曹鑫;羅建震;王曉琳;;無軸承開關(guān)磁阻電機繞組電流超前角計算方法[J];南京航空航天大學(xué)學(xué)報;2009年02期
9 楊鋼;鄧智泉;曹鑫;羅建震;王曉琳;;無軸承開關(guān)磁阻電機平均懸浮力控制策略[J];航空學(xué)報;2009年03期
10 曹鑫;鄧智泉;楊鋼;楊艷;王曉琳;;無軸承開關(guān)磁阻電機麥克斯韋應(yīng)力法數(shù)學(xué)模型[J];中國電機工程學(xué)報;2009年03期
相關(guān)博士學(xué)位論文 前2條
1 楊鋼;無軸承開關(guān)磁阻電動機的基礎(chǔ)研究[D];南京航空航天大學(xué);2008年
2 劉羨飛;磁懸浮開關(guān)磁阻電機基本參數(shù)與控制方法的研究[D];江蘇大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 徐振耀;一種新穎的12/14混合定子極型無軸承開關(guān)磁阻電機的設(shè)計與控制[D];沈陽工業(yè)大學(xué);2012年
2 周云紅;磁懸浮開關(guān)磁阻電機非理想狀態(tài)的數(shù)學(xué)模型及解耦控制[D];江蘇大學(xué);2010年
3 賀子鳴;基于支持向量機的開關(guān)磁阻電機無位置傳感器控制[D];天津大學(xué);2007年
,本文編號:1423939
本文鏈接:http://www.sikaile.net/shoufeilunwen/xixikjs/1423939.html