六輪擺臂林用底盤穩(wěn)定性分析與防傾翻研究
[Abstract]:With the increase of gross domestic product of forestry year by year, mechanization, automation and intelligent afforestation and harvesting will be the development trend in the future. The traditional forest chassis is mostly wheel-bridge type and crawler type. In the rugged terrain, there is no adaptive control function, high tipping probability. In this paper, an improved six-wheel swing arm forest chassis is proposed, which can change the position and pose of the chassis to improve the stability of the chassis. The main research work and innovation are as follows: 1. The corresponding virtual prototype model is designed and the experimental prototype is developed. The prototype consists of front frame, rear frame, left upper pendulum arm, right upper pendulum arm, left humanoid pendulum arm, right humanoid pendulum arm, left rear pendulum arm, right rear pendulum arm. And 6 tires are composed of 14 moving parts. The size and mass parameters and swing angle range of the test prototype are determined according to the prototype model. The basic coordinate system of the chassis is established at the center point of the swing arm of the front frame, and the kinematics model of the chassis is established by using the spinor theory. The Kane equation is used to establish the dynamic model of the chassis, and the Fiala tire model is used to define 12 generalized coordinates, and the universal dynamic model of the chassis is established. The dynamic model of the chassis is simplified by the relationship between the angular velocity of the chassis and the generalized velocity and the generalized angular velocity under the condition of pure tipping, and the final tipping dynamics model .3 is obtained. Combined with the static instability mechanism of the chassis, the chassis kinematics and the method of judging the stable cone, the influence of the swing arm angle on the static stability of the chassis is studied in this paper. It is concluded that the longitudinal instability should be reduced and the center of gravity should be reduced. The lateral instability should increase the side swing angle of the tilting shaft and reduce the opposite side swing angle to realize the lateral leveling of the fuselage. The static stability control strategy of the six-wheel swing arm chassis is put forward. In this paper, the influence of chassis velocity and swing arm angular acceleration on the dynamic instability of chassis is studied by combining with the dynamic tipping mechanism of chassis, the tipping dynamic model and the TTR early warning algorithm. The conclusions are as follows: increasing the angular acceleration of the tilting shaft will reduce the turning speed of the chassis during the process of dynamic destabilization and the corresponding dynamic stability control strategy is designed. A new active intelligent obstacle surmounting algorithm is proposed to maintain the stability of the fuselage. A joint simulation platform based on ADAMS and Simulink is established. The three states of vertical slope, side slope and dynamic collision are simulated, and the corresponding control strategies are adopted. The stability of the chassis is improved to varying degrees. The test results show that the maximum side inclination angle of the chassis prototype is 4.5 擄and the maximum longitudinal inclination angle is 2.5 擄under passive collision. The maximum inclination angle of the chassis prototype is 0.75 擄and the maximum longitudinal inclination angle is 0.4 擄. This experiment verifies the correctness of the algorithm of active obstacle crossing.
【學位授予單位】:北京林業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:S776
【相似文獻】
相關(guān)期刊論文 前4條
1 李洪德;王敦軍;付敏良;;新型自由擺臂式喂入機構(gòu)[J];農(nóng)村牧區(qū)機械化;2007年03期
2 孫旭亮;翁志煌;楊琳;;后挖掘機具擺臂機構(gòu)的設(shè)計[J];農(nóng)業(yè)開發(fā)與裝備;2014年03期
3 孫智慧;;有關(guān)東方紅-1002型拖拉機擺臂軸的改進建議[J];農(nóng)業(yè)機械;1999年12期
4 ;[J];;年期
相關(guān)會議論文 前10條
1 李誠志;B·愛德華特;;短跑擺臂動作模式[A];參加第四屆全國運動生物力學學術(shù)會議論文集[C];1983年
2 于渤洋;陸阿明;;不同手握負重對擺臂下蹲跳的影響研究[A];第九屆全國體育科學大會論文摘要匯編(3)[C];2011年
3 馬斌;李海琴;;普通高校短跑擺臂技術(shù)教學的探討與分析[A];第十四屆全國高校田徑科研論文報告會論文專輯[C];2004年
4 李立;趙煥彬;;對劉易斯、貝利、格林、蒙哥馬利擺臂方式的力學分析[A];第十屆全國運動生物力學學術(shù)交流大會論文匯編[C];2002年
5 白婧;李玲君;李建臣;;“跨欄擺臂控制帶”在跨欄運動中角量平衡問題的運動學研究[A];中國體育科學學會運動訓練學分會第四屆全國田徑運動發(fā)展研究成果交流會論文集[C];2011年
6 黃小林;劉建國;張彬;;短跑項目擺臂力量訓練器的研制[A];第12屆全國運動生物力學學術(shù)交流大會論文匯編[C];2008年
7 李健;劉剛;陳德志;;百米短跑項目上肢擺臂技術(shù)研究[A];中國體育科學學會運動訓練學分會第六屆全國田徑運動發(fā)展研究成果交流會論文集[C];2013年
8 顧冬云;胡飛;陳金靈;吳昱;;不同擺臂模式對人體步行穩(wěn)定性的影響[A];第十屆全國生物力學學術(shù)會議暨第十二屆全國生物流變學學術(shù)會議論文摘要匯編[C];2012年
9 羅霄;張學軍;;采用擺臂式輪廓儀實現(xiàn)大口徑空間光學表面的高精度測量[A];中國空間科學學會2013年空間光學與機電技術(shù)研討會會議論文集[C];2013年
10 汪孝林;周啟武;賀成柱;崔岐生;;L25-1臂式自動采制樣系統(tǒng)擺臂結(jié)構(gòu)仿真分析[A];2010全國機械裝備先進制造技術(shù)(廣州)高峰論壇論文匯編[C];2010年
相關(guān)博士學位論文 前1條
1 孫治博;六輪擺臂林用底盤穩(wěn)定性分析與防傾翻研究[D];北京林業(yè)大學;2016年
相關(guān)碩士學位論文 前10條
1 王翔;三種增強式跳躍動作的生物力學特征比較研究[D];西南大學;2015年
2 向軍;一種新型擺臂式脈動無級變速器的設(shè)計與研究[D];湘潭大學;2015年
3 劉新穎;獨立懸架系統(tǒng)橫擺臂的力學特性研究[D];沈陽工業(yè)大學;2016年
4 高明星;擺臂式輪廓儀旋轉(zhuǎn)軸空間狀態(tài)標定技術(shù)研究[D];中國科學院研究生院(光電技術(shù)研究所);2016年
5 于渤洋;擺臂對縱跳影響的生物力學機制研究[D];蘇州大學;2012年
6 黃小林;短跑項目擺臂力量訓練器的研發(fā)[D];河北師范大學;2009年
7 劉姍;跳遠擺臂技術(shù)對起跳效果影響的研究[D];陜西師范大學;2011年
8 劉之濤;蜂窩夾層擺臂彎曲性能及沖擊響應(yīng)的分析與研究[D];廣東工業(yè)大學;2014年
9 練森標;某客車前懸架運動性能及擺臂結(jié)構(gòu)優(yōu)化[D];南昌大學;2014年
10 屈新雯;擺臂式升降工作平臺的結(jié)構(gòu)設(shè)計與關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學;2009年
,本文編號:2237047
本文鏈接:http://www.sikaile.net/shoufeilunwen/nykjbs/2237047.html