大豆蚜抗高效氯氟氰菊酯的分子機制及差異蛋白質(zhì)組學分析
[Abstract]:Soybean aphids (Aphis glycines Matsumura) belong to the family Hemiptera aphidae, which infects soybeans and wild soybeans with pricking mouthparts and can transmit plant viruses, causing significant economic losses. As an effective insecticide, cyhalothrin has been used for a long time to control soybean aphids. The mechanisms of insect resistance include decreased penetration of the epidermis, increased detoxification and metabolism, and decreased target sensitivity. The main mechanisms leading to insect resistance are decreased detoxification and metabolism resistance and target sensitivity. To reveal the resistance mechanism of soybean aphids to high-efficiency cyhalothrin is of practical significance for effective control of soybean aphids and drug resistance control. A high-efficiency cyhalothrin-sensitive strain (CSS) and a resistant strain (CRR) of soybean aphids with the same genetic background were established in the laboratory through multi-generation resistance screening. The cross-resistance spectrum of high-efficiency cyhalothrin and other insecticides was established to provide experimental basis for rational use of pesticides in the field. The synergistic effect of synergists on high-efficiency cyhalothrin was studied by adding enzyme-related inhibitors to the CRR and CSS strains of soybean aphid. Carboxylesterase activity of CRR strain was detected by Q RT-PCR. The results showed that overexpression of carboxylesterase was related to resistance. Increased esterase activity and increased cytochrome P450 activity were the main mechanisms of insect resistance. The expression of cytochrome P450 was analyzed. The increase of its expression level is an important factor for the resistance of soybean aphids to high-efficiency cyhalothrin. Sodium channel is the target of pyrethroid insecticides. Through cloning and sequence analysis of its gene IIS4-S6, the relationship between the genes related to sodium channel and the resistance of soybean aphids to cyhalothrin was discussed. The difference of protein expression between high-performance cyhalothrin resistant strains CSS and CRR of soybean aphids was compared with that of soybean aphids. The results of cross-resistance toxicity test showed that high-performance cyhalothrin resistant strains of soybean aphids had moderate cross-resistance to chlorpyrifos (11.66 times) and low cross-resistance to acetamidophos (11.66 times). Horizontal cross-resistance (8.20 times), moderate cross-resistance (13.83 times) to cis-fenvalerate, moderate cross-resistance (9.64 times) to cyhalothrin, high cross-resistance (37.23 times) to cypermethrin, low cross-resistance (4.81 times) to bifenthrin, and moderate cross-resistance (9.64 times) to methomyl. The results of synergist study showed that the synergistic coefficients of CRR strain of soybean aphid reached 5.85, 23.00 and 40.59 respectively when TPP, DEF and PBO synergists were added to high-efficiency cyhalothrin. The results showed that the synergist had significant effect on the resistance of soybean aphid to cyhalothrin, indicating that the resistance of soybean aphid to cyhalothrin was related to esterase. The esterase kinetics analysis showed that the ratio of esterase activity of resistant strain was 1.405 times higher than that of sensitive strain, and the specific activity of carboxylesterase was significantly different between CSS strain and CR strain (p0.05). The expression of carboxylesterase in soybean aphid was analyzed by Q RT-PCR. CRR strain was 5.87 times higher than CSS strain. The transcription level of carboxylesterase gene m RNA was significantly different between CRR strain and CSS strain. The expression levels of CYP6A13-like, CYP6A2-like, CYP6A14-like and CYtochrome b-c1 genes were significantly increased. Cloning and sequencing of sodium channel genes IIS4, IIS5 and IIS6 showed that the nucleotide sequence contained KDR and super-kdr loci. If the corresponding sites of the sodium channel gene sequence of soybean aphid resistant strain were mutated, the two loci could be explained. The site was correlated with KDR and super-kdr of high-efficiency Cyhalothrin in soybean aphids, which laid a theoretical foundation for studying the mechanism of resistance of sodium channel to high-efficiency Cyhalothrin in soybean aphids. The results showed that 36 protein abundances were more than 2-fold differentially expressed, and 24 proteins were identified effectively, including tubule-binding protein, actin, epidermal protein, fructose-1,6-diphosphate aldolase, enolase, heat shock protein, etc. Some resistance-responsive proteins played an important role in the resistance of soybean aphid to beta-cyhalothrin. The purpose.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:S435.651
【相似文獻】
相關(guān)期刊論文 前10條
1 吳炳芝,孫毅民,張傳文;吡蟲啉防治大豆蚜蟲試驗初報[J];黑龍江農(nóng)業(yè)科學;2001年03期
2 苗進,吳孔明,李國勛;大豆蚜的研究進展[J];大豆科學;2005年02期
3 劉振勇,李唯實;大豆蚜蟲發(fā)生原因及防治措施[J];作物雜志;2005年02期
4 ;黑龍江大豆蚜蟲將中等偏重發(fā)生[J];農(nóng)藥市場信息;2006年16期
5 劉健;趙奎軍;;大豆蚜的生物學防治技術(shù)[J];昆蟲知識;2007年02期
6 李春紅;解春霞;;淺談大豆蚜防治技術(shù)[J];化工之友;2007年17期
7 袁國慶;;大豆蚜發(fā)生規(guī)律及防治技術(shù)[J];農(nóng)業(yè)科技通訊;2008年02期
8 孫艷華;唐成霞;許麗艷;;大豆蚜蟲的發(fā)生與防治[J];種子世界;2008年06期
9 劉興龍;李新民;劉春來;王克勤;王爽;劉宇;;大豆蚜研究進展[J];中國農(nóng)學通報;2009年14期
10 李長鎖;于涵;馬躍;;大豆蚜發(fā)生規(guī)律及防治措施[J];現(xiàn)代化農(nóng)業(yè);2009年10期
相關(guān)會議論文 前3條
1 孫雅杰;高月波;;大豆蚜田間種群消長與蚜害防治[A];當代昆蟲學研究——中國昆蟲學會成立60周年紀念大會暨學術(shù)討論會論文集[C];2004年
2 郭文英;喬格俠;任炳忠;;大豆蚜線粒體基因組序列測定與分析[A];北京昆蟲學會通訊(第23期)[C];2011年
3 宋淑云;晉齊鳴;楊敏芝;張偉;李紅;沙洪林;;白僵菌對大豆蚜的寄生性研究[A];農(nóng)業(yè)生物災害預防與控制研究[C];2005年
相關(guān)重要報紙文章 前6條
1 商丘市農(nóng)業(yè)局 謝幸華;大豆蚜[N];河南科技報;2005年
2 安徽省植?傉;安徽局部地區(qū)大豆蚜蟲數(shù)量偏多[N];農(nóng)資導報;2006年
3 劉忠林 記者 孟寶林;科學防治病蟲害 大豆水稻是重點[N];牡丹江日報;2007年
4 王春雨 高增雙;三江平原罕見旱情該引發(fā)何樣思考?[N];中國社會報;2007年
5 徐仁吉;夏季農(nóng)田要注意防治病蟲害[N];四平日報;2009年
6 市植檢植保站 劉振勇;今年我市農(nóng)作物主要生物災害發(fā)生趨勢分析[N];黑河日報;2010年
相關(guān)博士學位論文 前4條
1 王玲;大豆蚜氣味結(jié)合蛋白的結(jié)合特性及組織定位[D];東北農(nóng)業(yè)大學;2014年
2 畢銳;大豆蚜抗高效氯氟氰菊酯的分子機制及差異蛋白質(zhì)組學分析[D];吉林大學;2016年
3 楊帥;大豆蚜對吡蟲啉的抗性監(jiān)測及抗性機理研究[D];東北農(nóng)業(yè)大學;2012年
4 張瑩;大豆蚜的飛行生物學及對寄生蜂的傳播潛力[D];中國農(nóng)業(yè)科學院;2009年
相關(guān)碩士學位論文 前10條
1 張拓;大豆蚜熱休克蛋白70基因的克隆、原核表達與定量分析[D];東北農(nóng)業(yè)大學;2013年
2 劉興龍;黑龍江大豆蚜對大豆危害及產(chǎn)量損失的研究[D];中國農(nóng)業(yè)科學院;2013年
3 李冉;基于線粒體基因的不同地理種群大豆蚜遺傳分化研究[D];東北農(nóng)業(yè)大學;2016年
4 李長鎖;哈爾濱地區(qū)大豆蚜越冬和遷飛擴散習性的研究[D];東北農(nóng)業(yè)大學;2008年
5 鞠靜;利用熒光定量PCR技術(shù)分析捕食性天敵對大豆蚜的控害作用[D];東北農(nóng)業(yè)大學;2010年
6 戴長春;大豆蚜(Aphis glycines Matsumura)種群動態(tài)及天敵控制作用研究[D];東北農(nóng)業(yè)大學;2005年
7 張俊杰;大豆抗蚜資源篩選及大豆蚜生物型鑒定初探[D];上海交通大學;2013年
8 陳曉慧;大豆蚜對溫度和寄主植物的適應性研究[D];東北農(nóng)業(yè)大學;2015年
9 楊帥;大豆蚜(Aphis glycines Matsumura)不同地理種群生態(tài)適應性研究[D];東北農(nóng)業(yè)大學;2009年
10 張樺;抗高效氯氟氰菊酯大豆蚜羧酸酯酶生化及分子機制研究[D];吉林大學;2013年
,本文編號:2233544
本文鏈接:http://www.sikaile.net/shoufeilunwen/nykjbs/2233544.html