玉米免耕播種機(jī)精確播種關(guān)鍵技術(shù)研究
[Abstract]:The black soil area of Northeast China is one of the three largest black soil areas in the world. The natural fertility of the black soil is high and is suitable for agricultural production. It is the most important grain production base in our country. The traditional agricultural production is mainly based on the intensive farming model, the agricultural machinery is working many times and the soil is disturbed frequently, and the arable land has nearly 7 months in the nude leisure state and wind erosion. Water erosion is serious; excessive application of pesticide and chemical fertilizer leads to soil slate. Therefore, it is of great significance to prevent soil erosion in the northeast black soil area and improve soil fertility to ensure national food safety, improve the ecological environment, and realize the sustainable development of agriculture. The core of conservation tillage technology is crop residue covering and no tillage sowing, and precision seed metering device is the key component of no tillage planter, and its performance in no tillage sowing operation is determined by the content of soil erosion and water erosion for many years. The effect of protective tillage. Compared with the ordinary seeder, the working environment of the no tillage planter is worse, the surface roughness and the crop straw, the stubble will cause the vibration of the planter, especially in the high speed precision sowing, the influence of vibration on the precision seeder is more obvious. Therefore, this paper focuses on the vibration of the planter under straw mulching. In order to reduce the vibration of no tillage planter and improve the sowing quality, the corresponding damping working parts are designed to improve the sowing quality. (1) through the contrast test, the vibration conditions of the finger pinch type seed metering device under the two conditions of chain drive and motor drive are tested, and the sowing index, the replay index and the leakage index are compared with those of the two. The vibration characteristics, including vibration acceleration and frequency, were obtained by the method of soil trough testing, including vibration acceleration and frequency. Based on the test data, a vibration test rig was designed to simulate the working conditions of no tillage planter in the field, and a bench test was carried out on the work performance and influence factors of the finger pinch seeder under vibration conditions. The results show that both the vibration frequency and the amplitude of the seed metering device have significant influence on the sowing index and the leakage index. The vibration frequency of the seed metering device has a significant influence on the sowing index and the vibration amplitude of the seed metering device on the sowing index. The vibration frequency of the seed seeder has a better effect on sowing index than the sowing device vibration amplitude. The influence of the leakage index is significant. The bench test can provide reference for the design of subsequent vibration damping device. (2) an automatic control method of the sowing monomer for no tillage seeder is proposed, and the automatic control system of the sowing monomer is designed. The PVDF piezoelectric film is used to make the deep wheel tread deformation sensor of the no tillage planter to monitor the sowing monomer in real time. For the ground pressure, the actual opening depth of the trench is calculated indirectly. When the target depth is not consistent with the target depth, the system can increase or reduce the ground pressure by controlling the air spring to reduce the vibration, control the sowing depth and improve the sowing quality. The field test results show that the automatic control system of the sowing monomer vibration damping is done in the sowing machine. When the speed is 5~8 km/h, the qualified rate of sowing depth is above 91%, of which the sowing depth is the highest when the operation speed is 7 km/h, and the vibration acceleration is reduced by more than 30%, of which the maximum decrease of the vibration frequency is 7 km/h, and the vibration frequency decreases more than 24%, of which the maximum amplitude decreases when the working speed is 6 km/h; the amplitude decreases averagely. It is more than 30% small, which reduces the maximum amplitude when the operation speed is 7 km/h. It can be seen that the performance of the automatic control system of the sowing monomer in the high speed operation is obviously superior to the passive copying mechanism. (3) a non tillage seeder straw cutting and blocking device is designed, the cutting mode of the main passive combination and the combined blade structure are adopted. The cutters in 3 planes are installed in the anti blocking device. The cutting tool on both sides takes the passive rotation operation, the tool in the middle takes the active rotation operation, and the straw (root stubble) can be cut and cut during the operation to improve the cutting rate and reduce the power consumption. The field test results show that the cutting rate of the straw (root) by the influence factors is obvious. The order from large to small is the rotational speed of the active cutter, the radius of the blade and the speed of the machine. The significant order of the power consumption of the single blade from large to small is the rotating speed of the active cutter, the speed of the machine tool and the radius of the blade, and the Design-Expert software is predicted by the Design-Expert software on the premise that the cutting rate of the straw is above the cutting rate of more than 95%. The best combination of the cutting rate of straw (root stubble) and the power consumption of single blade was 2.1 m/s, 120 r/min of the rotating speed of the active cutter, and the rotary radius 200mm. of the blade was tested according to the optimum parameters. The results showed that the average cutting rate of straw (root stubble) was 95.3%, and the power consumption of the blade was consumed by the combination of the best working parameters. The average value is 145.2 W. (4) to develop a remote seeding performance monitoring system for no tillage seeder, including seeding monitoring subsystem, seed metering subsystem, GPS positioning subsystem and remote server and other four parts. The GPS receiver is used as a leak, replay location collector, GPRS DTU block as a remote transmission tool and STM32 MCU as the core processing. The PVDF piezoelectric sensor is a monitoring element. The system can monitor the performance index of the seeder in real time and accurately, and transmit the data of the sowing quality information, the remote server program realizes the functions of data receiving, storage, inquiry, statistics, analysis, processing and alarm. The field test results show that the remote seeding performance monitoring system is used. The system has a stable and reliable performance. It can effectively monitor the sowing quality of the seeder. The precision of the sowing quantity is 97.4%, the leakage detection precision is 96.1%, the precision of the replay detection is 95.9%, and the accurate location of the sowing quality information is realized. (5) the improved design of the 2BMZ-4 type wide narrow row non tillage seeder is carried out and the field experiment is carried out. The experimental results show that the 2BMZ-4 type wide narrow row no tillage seeder has good working performance. The above work provides the technical reference for the research of the key technology for the precision seeding of the maize no tillage seeder. The examination is of practical application value.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:S223.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉小凡;陜西研制出一種新型免耕播種機(jī)[J];北京農(nóng)業(yè);2002年09期
2 可鐵;陜西首創(chuàng)一種新型的免耕播種機(jī)[J];河南科技;2002年10期
3 蘭草;多用免耕播種機(jī)[J];山東農(nóng)機(jī)化;2002年04期
4 吉虹;;陜西首創(chuàng)新型免耕播種機(jī)[J];農(nóng)家之友;2002年05期
5 李楊;陜西省研制出新型免耕播種機(jī)[J];北京農(nóng)業(yè);2003年04期
6 胡梅娟 ,馬永欣;新型玉米免耕播種機(jī)在天津下線[J];北京農(nóng)業(yè);2003年08期
7 趙其斌;小麥免耕播種機(jī)的正確使用[J];河北農(nóng)機(jī);2003年05期
8 ;免耕播種機(jī)[J];中國(guó)農(nóng)業(yè)信息;2003年10期
9 秦學(xué)榮;奇臺(tái)縣引進(jìn)免耕播種機(jī)示范初見(jiàn)成效[J];新疆農(nóng)機(jī)化;2003年05期
10 康復(fù)堂;農(nóng)耕市場(chǎng)急需高效免耕播種機(jī)[J];中國(guó)鄉(xiāng)鎮(zhèn)企業(yè)技術(shù)市場(chǎng);2003年11期
相關(guān)會(huì)議論文 前10條
1 吳仕宏;李寶筏;;免耕播種機(jī)的發(fā)展現(xiàn)狀及前景展望[A];全面建設(shè)小康社會(huì):中國(guó)科技工作者的歷史責(zé)任——中國(guó)科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年
2 高煥文;李洪文;姚宗路;;中國(guó)輕型免耕播種機(jī)研究[A];2007年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2007年
3 吳仕宏;李寶筏;;免耕播種機(jī)的發(fā)展現(xiàn)狀及前景展望[A];全面建設(shè)小康社會(huì)——中國(guó)科協(xié)二○○三年學(xué)術(shù)年會(huì)農(nóng)林水論文精選[C];2003年
4 羅紅旗;高煥文;;玉米壟作免耕播種機(jī)試驗(yàn)研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集第一分冊(cè)[C];2005年
5 楊悅乾;紀(jì)文義;趙艷忠;趙淑紅;龔振平;馬春梅;;2BM—2免耕播種機(jī)的設(shè)計(jì)及試驗(yàn)研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集第一分冊(cè)[C];2005年
6 姚宗路;王曉燕;高煥文;李洪文;;一年兩熟區(qū)玉米覆蓋地三種小麥免耕播種機(jī)試驗(yàn)研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集第一分冊(cè)[C];2005年
7 蔣金琳;高換文;龔麗農(nóng);;免耕播種機(jī)玉米根茬處理裝置功耗模型[A];2007年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2007年
8 羅紅旗;高煥文;劉安東;;玉米壟作免耕播種機(jī)研究[A];北京機(jī)械工程學(xué)會(huì)2008年優(yōu)秀論文集[C];2008年
9 羅紅旗;高煥文;劉安東;;玉米壟作免耕播種機(jī)研究[A];第四屆十三省區(qū)市機(jī)械工程學(xué)會(huì)科技論壇暨2008海南機(jī)械科技論壇論文集[C];2008年
10 王慶杰;何進(jìn);梁忠輝;李洪文;李問(wèn)盈;朱惠斌;;東北地區(qū)玉米壟作免耕播種機(jī)研究現(xiàn)狀[A];中國(guó)農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 洪琦 張瑛;我區(qū)有了新型免耕播種機(jī)[N];寧夏日?qǐng)?bào);2009年
2 記者 馬玉濤;新型小麥免耕播種機(jī)“初試牛刀”[N];寧夏日?qǐng)?bào);2009年
3 胡梅娟 馬永欣;新型玉米免耕播種機(jī)[N];經(jīng)濟(jì)參考報(bào);2003年
4 北京農(nóng)機(jī)試驗(yàn)鑒定推廣站;國(guó)產(chǎn)玉米免耕播種機(jī)昌平成功演示[N];農(nóng)資導(dǎo)報(bào);2004年
5 農(nóng)業(yè)部辦公廳;玉米免耕播種機(jī)試驗(yàn)選型項(xiàng)目通過(guò)驗(yàn)收[N];農(nóng)資導(dǎo)報(bào);2005年
6 梅娟 永欣;玉米免耕播種機(jī)[N];中國(guó)鄉(xiāng)鎮(zhèn)企業(yè)報(bào);2003年
7 閻義;玉米免耕播種機(jī)[N];中國(guó)鄉(xiāng)鎮(zhèn)企業(yè)報(bào);2004年
8 農(nóng)業(yè)部保護(hù)性耕作專家組首席專家、中國(guó)農(nóng)業(yè)大學(xué)教授 高煥文;一年兩熟區(qū)保護(hù)性耕作發(fā)展長(zhǎng)效機(jī)制建設(shè)探討[N];中國(guó)農(nóng)機(jī)化導(dǎo)報(bào);2007年
9 通訊員楊樹仁;免耕播種機(jī)昭蘇受青睞[N];伊犁日?qǐng)?bào)(漢);2009年
10 秦聞;陜 戶縣首創(chuàng)新型免耕播種機(jī)[N];農(nóng)民日?qǐng)?bào);2002年
相關(guān)博士學(xué)位論文 前9條
1 姜鑫銘;玉米免耕播種機(jī)精確播種關(guān)鍵技術(shù)研究[D];吉林大學(xué);2017年
2 張晉國(guó);帶狀粉碎免耕播種機(jī)的試驗(yàn)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2001年
3 尹彥鑫;少免耕播種機(jī)信息流遠(yuǎn)程監(jiān)測(cè)方法研究[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
4 包文育;東北壟作免耕播種機(jī)關(guān)鍵部件研究與整機(jī)設(shè)計(jì)[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2009年
5 白曉虎;免耕播種機(jī)關(guān)鍵部件及其參數(shù)化設(shè)計(jì)方法研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2012年
6 蔣金琳;玉米免耕播種機(jī)切茬挖茬裝置研究[D];中國(guó)農(nóng)業(yè)大學(xué);2004年
7 魏延富;機(jī)電伺服觸覺(jué)式秸稈導(dǎo)向系統(tǒng)試驗(yàn)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2005年
8 廖慶喜;免耕播種機(jī)防堵與排種裝置試驗(yàn)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2003年
9 王漢羊;2BMFJ-3型麥茬地免耕覆秸大豆精密播種機(jī)的研究[D];東北農(nóng)業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 楊彥光;三種小麥免耕播種機(jī)性能試驗(yàn)及其效果對(duì)比研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2010年
2 侯海東;玉米免耕精密播種機(jī)的設(shè)計(jì)與應(yīng)用推廣[D];吉林農(nóng)業(yè)大學(xué);2015年
3 楊慧;小麥免耕播種機(jī)的研究[D];安徽農(nóng)業(yè)大學(xué);2014年
4 劉林;免耕播種機(jī)地輪設(shè)計(jì)與試驗(yàn)研究[D];東北農(nóng)業(yè)大學(xué);2015年
5 張旭;免耕播種機(jī)排種裝置振動(dòng)測(cè)試及特征參數(shù)分析研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
6 齊鵬;免耕播種機(jī)破茬防堵裝置設(shè)計(jì)與試驗(yàn)研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
7 高富強(qiáng);氣吸式玉米免耕播種機(jī)播種施肥性能優(yōu)化與試驗(yàn)研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
8 錢巍;玉米壟作免耕播種機(jī)的動(dòng)態(tài)模擬與關(guān)鍵部件的參數(shù)優(yōu)化[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
9 羅征;原茬地12行小麥免耕播種機(jī)關(guān)鍵技術(shù)研究[D];東北農(nóng)業(yè)大學(xué);2016年
10 聞浩楠;滾筒穴播式免耕播種機(jī)關(guān)鍵技術(shù)與部件研究[D];東北農(nóng)業(yè)大學(xué);2016年
,本文編號(hào):2141971
本文鏈接:http://www.sikaile.net/shoufeilunwen/nykjbs/2141971.html