天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

魚蚌綜合養(yǎng)殖池塘養(yǎng)殖模式優(yōu)化的研究

發(fā)布時(shí)間:2018-06-03 00:46

  本文選題:淡水池塘 + 綜合養(yǎng)殖; 參考:《浙江大學(xué)》2016年博士論文


【摘要】:本文以我國(guó)常見水產(chǎn)經(jīng)濟(jì)種類三角帆蚌、草魚、鯽、鰱和鳙為研究對(duì)象,分別從系統(tǒng)放養(yǎng)結(jié)構(gòu)和水質(zhì)管理措施兩方面對(duì)池塘綜合養(yǎng)殖模式的優(yōu)化進(jìn)行了較為系統(tǒng)的研究,以期為我國(guó)淡水池塘養(yǎng)殖模式優(yōu)化提供科學(xué)依據(jù)。主要結(jié)果如下:(1)2009年5~11月測(cè)定了浙江省湖州市南潯區(qū)花園灣村兩口魚類混養(yǎng)池塘的水溫(T)、透明度(SD)、溶氧(DO)、pH、電導(dǎo)率、鹽度、總氨氮(TAN)、亞硝態(tài)氮(NO2-N)、硝態(tài)氮(NO3-N)、磷酸鹽(P04-P)、總氮(TN)、總磷(TP)、高錳酸鉀指數(shù)(CODMn)、葉綠素a(Chla)以及浮游植物的種類組成和密度(實(shí)驗(yàn)Ⅰ)。2010年8月在包括以上兩口池塘在內(nèi)的附近12口魚類混養(yǎng)池塘采樣,分析其SD、TN、TP和CODMn(實(shí)驗(yàn)Ⅱ)。結(jié)果表明:實(shí)驗(yàn)Ⅰ中池塘內(nèi)的TAN為1.372~1.664 mg/L,NO2-N為0.072~0.076 mg/L,NO3-N為0.139~0.144 mg/L,P04-P為0.038~0.062 mg/L,TN為2.267~2.828mg/L,TP為0.274~0.277mg/L,CODMn為15.46~15.51 mg/L。池塘內(nèi)浮游植物優(yōu)勢(shì)種為小于10 pm的藍(lán)藻和綠藻。實(shí)驗(yàn)Ⅱ中主養(yǎng)草魚池塘內(nèi)SD為12~37 cm,TN為2.85~5.87 mg/L、TP為0.47-2.20 mg/L,CODMn為25.58~50.19 mg/L。結(jié)果說(shuō)明魚類混養(yǎng)池塘具有TN、TP和CODMn較高的特點(diǎn),建議在池塘中適當(dāng)配養(yǎng)濾食性種類來(lái)降低養(yǎng)殖污染。(2)2011年8月29日~9月1日分析了浙江省諸暨市楓橋鎮(zhèn)10口三角帆蚌(Hyriopsis cumingii)養(yǎng)殖池塘中的浮游植物種類組成、生物量和理化環(huán)境因子。結(jié)果顯示,三角帆蚌養(yǎng)殖池塘內(nèi)共觀察到浮游植物51屬/種,優(yōu)勢(shì)種為平裂藻、微囊藻、腔球藻和柵藻;浮游植物生物量為0.71~8.01×108 cell/L,71%~97%為藍(lán)藻。池塘內(nèi)SD平均值為33 cm、 DO為4~12 mg/L、TN為1.933~4.062mg/L、TP為0.154~1.010 mg/L.CODMn為6.49-10.06 mg/L,說(shuō)明三角帆蚌養(yǎng)殖池塘具有DO較高,SD、TN、TP、CODMn和TN/TP較低的特點(diǎn)。RDA分析顯示水溫是影響池塘中浮游植物常見種類生物量的主要環(huán)境因子,說(shuō)明相近池塘的浮游植物群落組成接近。鑒于所調(diào)查的池塘內(nèi)TN、TP、CODMn和TN/TP較低的特點(diǎn),建議適當(dāng)增加雜食性魚類放養(yǎng)密度和配合飼料投喂量并降低鴨糞施肥量。通過(guò)實(shí)驗(yàn)(1)和(2)的調(diào)查結(jié)果發(fā)現(xiàn),魚類混養(yǎng)池塘可為三角帆蚌的生長(zhǎng)提供足夠的營(yíng)養(yǎng)支持。(3)通過(guò)78 d圍隔實(shí)驗(yàn)檢驗(yàn)了在草魚、鯽、鰱、鳙混養(yǎng)系統(tǒng)中吊養(yǎng)三角帆蚌對(duì)魚產(chǎn)量和水質(zhì)的影響。設(shè)2個(gè)處理,處理Ⅰ混養(yǎng)草魚、鯽、鰱和鳙,處理Ⅱ在處理Ⅰ基礎(chǔ)上按魚:蚌=1:1的比例配養(yǎng)三角帆蚌。實(shí)驗(yàn)期間定期采樣分析浮游植物種類組成和生物量、初級(jí)生產(chǎn)力(P)、群落呼吸(R)、DO、pH、SD、碳酸根離子(C032-)、碳酸氫根離子(HCO3-)、氯離子(Cl-)、硫酸根離子(S042-)、鈣離子(Ca2+)、鎂離子(Mg2+)、Na++K+、總堿度、總硬度、TAN、NO2-N、NO3-N、PO4-P、TN、TP、總有機(jī)碳(TOC)、CODMn和生化耗氧量(BOD5)。結(jié)果發(fā)現(xiàn),吊養(yǎng)三角帆蚌顯著降低水體中Ca2+濃度,但對(duì)其他指標(biāo)均無(wú)顯著影響。處理Ⅱ草魚、鯽、鰱產(chǎn)量略高于處理Ⅰ,而鳙產(chǎn)量略低于后者,表明在草魚、鯽、鰱、鳙混養(yǎng)系統(tǒng)中按1:1的比例配養(yǎng)三角帆蚌不會(huì)導(dǎo)致草魚和鯽產(chǎn)量下降,但導(dǎo)致鳙產(chǎn)量降低。處理Ⅱ浮游植物多樣性(Shannon-Weaver多樣性指數(shù)、Margalef豐富度指數(shù)、Pielou均勻度指數(shù)和種類數(shù))、P、P/R、SD和DO略高于處理Ⅰ,而氨態(tài)氮、活性磷、TN、TP、CODMn、BOD5和TOC略低于后者,表明在混養(yǎng)系統(tǒng)中配養(yǎng)三角帆蚌可顯著降低養(yǎng)殖水體Ca2+濃度,同時(shí)可在一定程度上提高浮游植物多樣性、P和DO并降低TN、TP、 CODMn、BOD5和TOC。本實(shí)驗(yàn)結(jié)果表明在淡水魚類混養(yǎng)系統(tǒng)中適度配養(yǎng)三角帆蚌可提高養(yǎng)殖的經(jīng)濟(jì)效益,同時(shí)有助于降低養(yǎng)殖系統(tǒng)內(nèi)氮、磷和有機(jī)廢物的積累。(4)通過(guò)90 d圍隔實(shí)驗(yàn)檢驗(yàn)了不同三角帆蚌密度對(duì)草魚、鯽、鰱和鳙混養(yǎng)系統(tǒng)生產(chǎn)性能和水質(zhì)的影響。設(shè)4種非插珠蚌密度:M1(85 ind/圍隔)、M2(55 ind/圍隔)、M3(25 ind/圍隔)、C(0 ind/圍隔)。每個(gè)放蚌圍隔內(nèi)另加插珠蚌5 ind。結(jié)果發(fā)現(xiàn),隨著三角帆蚌密度的增加,其對(duì)魚類生產(chǎn)性能(草魚和鯽個(gè)體增重、魚產(chǎn)量和營(yíng)養(yǎng)利用效率)、浮游植物指標(biāo)(群落多樣性、生物量和功能)、SD增量、水化學(xué)指標(biāo)增量(DO、pH, Ca2+、堿度、硬度、TAN、TN、TP、CODMn和BOD5)等的改善效果逐漸升高,而三角帆蚌生長(zhǎng)和珍珠產(chǎn)量逐漸降低。影響草魚、鯽、鰱和鳙生長(zhǎng)的環(huán)境因子主要為藍(lán)藻生物量、浮游植物多樣性指數(shù)、堿度和TAN。季節(jié)變化對(duì)養(yǎng)殖環(huán)境的影響大于三角帆蚌密度變化引起的影響。結(jié)果說(shuō)明,三角帆蚌可一定程度上提高魚類產(chǎn)量和資源利用效率,并改善養(yǎng)殖水體浮游植物群落結(jié)構(gòu)、功能和水化學(xué)指標(biāo),其作用效果與三角帆蚌放養(yǎng)密度密切相關(guān)。然而,三角帆蚌的放養(yǎng)僅可緩解混養(yǎng)系統(tǒng)中富營(yíng)養(yǎng)化的進(jìn)程但不能平衡其危害。因此,需發(fā)展新技術(shù)來(lái)進(jìn)一步降低系統(tǒng)中的養(yǎng)殖廢物。(5)通過(guò)90 d圍隔實(shí)驗(yàn)檢驗(yàn)了兩種三角帆蚌密度(5插珠蚌+85非插珠蚌VS 5插珠蚌+55非插珠蚌)和兩種羅非魚放養(yǎng)機(jī)制(放養(yǎng)或不放養(yǎng))對(duì)草魚、鯽、鰱和鳙混養(yǎng)系統(tǒng)生產(chǎn)性能和水質(zhì)的影響。結(jié)果發(fā)現(xiàn),羅非魚顯著增加魚產(chǎn)量及水體中TAN、CODMn和BOD5濃度,并顯著降低非插珠蚌個(gè)體增重和FCR (P0.05)。增加三角帆蚌密度可相對(duì)提高營(yíng)養(yǎng)利用效率,維持浮游植物群落多樣性并改善其功能,降低水體中的N、P和有機(jī)質(zhì);而羅非魚相對(duì)降低其他魚類和三角帆蚌生長(zhǎng)、珍珠產(chǎn)量、浮游植物群落多樣性和功能。結(jié)果說(shuō)明,增加三角帆蚌密度可一定程度上改善魚類生產(chǎn)性能和養(yǎng)殖環(huán)境;添加羅非魚顯著促進(jìn)魚產(chǎn)量和營(yíng)養(yǎng)利用效率,但限制其他魚類生長(zhǎng)和珍珠產(chǎn)量,并導(dǎo)致養(yǎng)殖環(huán)境惡化,因此在魚類混養(yǎng)池塘中應(yīng)控制其放養(yǎng)密度。(6)利用草魚、鯽、鰱和鳙構(gòu)建魚類混養(yǎng)系統(tǒng),通過(guò)60 d圍隔實(shí)驗(yàn)檢驗(yàn)了微生物產(chǎn)品(添加或不添加)和三角帆蚌(吊養(yǎng)或不吊養(yǎng))對(duì)混養(yǎng)系統(tǒng)生產(chǎn)性能和水質(zhì)的影響。其中,放養(yǎng)結(jié)構(gòu)設(shè)為草魚+鯽+鰱+鳙或草魚+鯽+鰱+鳙+三角帆蚌。結(jié)果發(fā)現(xiàn):三角帆蚌和微生物產(chǎn)品的綜合效應(yīng)可顯著改善魚產(chǎn)量(P0.05)。二者均可促進(jìn)魚類生長(zhǎng)、提高魚產(chǎn)量并降低FCR、維持浮游植物多樣性、抑制藍(lán)藻生長(zhǎng)、提高初級(jí)生產(chǎn)力、降低水體渾濁度及PO4-P、TN、CODMn和BOD5濃度(P0.05)。結(jié)果說(shuō)明,在草魚、鯽、鰱和鳙混養(yǎng)系統(tǒng)中添加三角帆蚌和微生物產(chǎn)品可一定程度上提高魚類生產(chǎn)性能和改善水質(zhì),并且二者的協(xié)同效果更好。因此,可考慮增加系統(tǒng)中食餌性魚類密度來(lái)增加經(jīng)濟(jì)效益。(7)通過(guò)93 d圍隔實(shí)驗(yàn)檢驗(yàn)了不同食餌性魚類密度和微生物產(chǎn)品對(duì)魚蚌綜合養(yǎng)殖系統(tǒng)生產(chǎn)性能和水質(zhì)的影響。其中食餌性魚類(草魚:鯽=2:1)密度設(shè)為20草魚+10鯽或40草魚+20鯽,微生物產(chǎn)品(商用EM菌)添加或不添加。每個(gè)圍隔中放養(yǎng)20插珠蚌和20非插珠蚌。結(jié)果發(fā)現(xiàn),提高食餌性魚類密度顯著降低草魚生長(zhǎng)、SD和氮磷比(N/P)(P0.05),相對(duì)降低三角帆蚌生長(zhǎng)、珍珠產(chǎn)量和營(yíng)養(yǎng)利用效率(P0.05);顯著增加NO2-N、PO4-P、TN、TP、TOC、CODMn、BOD5、浮游植物生物量和藍(lán)藻比例(P0.05),相對(duì)提高魚產(chǎn)量(P0.05)。EM菌顯著抑制插珠蚌的生長(zhǎng)(P0.05),相對(duì)降低珍珠產(chǎn)量及TAN、TOC、CODMn、BOD5、浮游植物生物量和藍(lán)藻比例,促進(jìn)草魚和鯽的生長(zhǎng)、魚產(chǎn)量及營(yíng)養(yǎng)利用效率(P0.05)。季節(jié)變化對(duì)圍隔內(nèi)水化學(xué)指標(biāo)的影響高于食餌性魚類密度和微生物產(chǎn)品的影響。SD、NO2-N和TOC為影響魚、蚌生長(zhǎng)的主要環(huán)境因子。結(jié)果說(shuō)明增加食餌性魚類密度會(huì)損害珍珠產(chǎn)量并加快水體富營(yíng)養(yǎng)化進(jìn)程,而添加EM菌不能平衡草魚和鯽密度增加引起的珍珠產(chǎn)量降低和水質(zhì)惡化的不良影響,且EM菌對(duì)三角帆蚌的生長(zhǎng)不利。因此,在三角帆蚌與草魚、鯽、鰱和鳙的綜合養(yǎng)殖系統(tǒng)中增加食餌性魚類密度和添加EM菌時(shí)需慎重。(8)推測(cè)實(shí)驗(yàn)(7)中EM菌未能發(fā)揮有效作用與實(shí)驗(yàn)過(guò)程中未曝氣有關(guān)。通過(guò)93 d圍隔實(shí)驗(yàn)檢驗(yàn)了不同食餌性魚類密度和曝氣對(duì)微生物產(chǎn)品(商用EM菌)改善魚蚌綜合養(yǎng)殖系統(tǒng)生產(chǎn)性能和水質(zhì)的影響。設(shè)兩種草魚和鯽放養(yǎng)密度(20草魚和10鯽VS 40草魚和20鯽)和兩種曝氣措施(曝氣VS不曝氣);A(chǔ)魚蚌綜合養(yǎng)殖系統(tǒng)包括40三角帆蚌(20插珠蚌和20非插珠蚌)、8鰱和2鳙。每個(gè)圍隔中定期添加商用EM菌。結(jié)果發(fā)現(xiàn),增加草魚和鯽密度顯著降低草魚個(gè)體增重,提高浮游植物群落呼吸,增加TOC、總碳(TC)、 TN、TP、N/P、CODMn和BOD5濃度(P0.05)。曝氣相對(duì)提高魚產(chǎn)量和營(yíng)養(yǎng)利用效率并降低水體中TN、TP、CODMn和BOD5濃度(P0.05)。結(jié)果說(shuō)明,在三角帆蚌與草魚、鯽、鰱和鳙的綜合養(yǎng)殖系統(tǒng)中,低密度食餌性魚類時(shí)魚蚌生產(chǎn)性能和水質(zhì)較好。曝氣可改善微生物產(chǎn)品的使用效果。(9)通過(guò)31d水槽實(shí)驗(yàn)檢驗(yàn)了不同微生物產(chǎn)品(諾碧清凈水劑、中水牌復(fù)合菌劑和EM菌)對(duì)草魚、鯽和鰱混養(yǎng)系統(tǒng)魚類生長(zhǎng)和水質(zhì)的影響。設(shè)4個(gè)處理:添加諾碧清凈水劑(NO)、添加中水牌復(fù)合菌劑(PB)、添加EM菌(EM)和空白對(duì)照組(BL)。放養(yǎng)魚類每天投飼配合飼料,微生物產(chǎn)品每隔10d添加一次。結(jié)果發(fā)現(xiàn):不同微生物產(chǎn)品對(duì)魚類存活率、個(gè)體增重、餌料利用系數(shù)、SD、水化學(xué)指標(biāo)(DO、pH、NH3-N、NO2-N、 NO3-N、PO4-P、TN、TP、CODMn)和浮游植物指標(biāo)(種類組成、生物量、Chl a濃度和多樣性指數(shù))無(wú)顯著的影響。該研究說(shuō)明,在短期(31 d)內(nèi)每隔10d添加微生物產(chǎn)品不會(huì)對(duì)草魚、鯽和鰱構(gòu)成的混養(yǎng)系統(tǒng)的生產(chǎn)性能和水質(zhì)產(chǎn)生有益效果。本研究結(jié)果表明:(1)魚類混養(yǎng)池塘可為三角帆蚌提供足夠的營(yíng)養(yǎng)支持;(2)三角帆蚌的吊養(yǎng)有利于改善魚類混養(yǎng)系統(tǒng)的經(jīng)濟(jì)效益和生態(tài)效益,且改善效果與三角帆蚌的放養(yǎng)密度有關(guān);(3)在魚蚌綜合養(yǎng)殖系統(tǒng)中放養(yǎng)羅非魚可增加魚產(chǎn)量,同時(shí)降低其他魚類和三角帆蚌的生長(zhǎng)并惡化養(yǎng)殖環(huán)境;(4)在魚蚌綜合養(yǎng)殖中使用商業(yè)微生物水質(zhì)改良產(chǎn)品可在一定程度上改善魚類生產(chǎn)性能和養(yǎng)殖水質(zhì),但并不能解決因魚類養(yǎng)殖中投餌產(chǎn)生的養(yǎng)殖廢物積累的問(wèn)題,此外使用微生物產(chǎn)品不利于三角帆蚌的生長(zhǎng);(5)曝氣可改善微生物產(chǎn)品的使用效果;(6)在短期(31 d)內(nèi)每隔10d添加微生物產(chǎn)品不會(huì)對(duì)草魚、鯽和鰱構(gòu)成的混養(yǎng)系統(tǒng)的生產(chǎn)性能和水質(zhì)產(chǎn)生有益效果。
[Abstract]:In this paper, a systematic study on the optimization of comprehensive aquaculture model of ponds was carried out from two aspects of the system stocking structure and water quality management measures in two aspects of the common aquatic economic species in China, including the system raising structure and water quality management measures, in order to provide scientific basis for the optimization of freshwater pond culture mode in China. The main results are as follows: (1 The water temperature (T), SD, DO, DO, pH, pH, conductivity, salinity, TAN, NO2-N, NO3-N, P04-P, P04-P, total nitrogen (TN), total phosphorus (TP), Potassium Permanganate index (CODMn), chlorophyll a and phytoplankton were measured in the two fish mixed ponds in the Garden Bay Village, Nanxun District, Zhejiang province. The species composition and density (Experiment I) in August.2010, 12 fish mixed ponds, including the above two ponds, were sampled to analyze their SD, TN, TP and CODMn (Experiment II). The results showed that the TAN in the pond was 1.372 to 1.664 mg/L, NO2-N was 0.072 to 0.076 mg/L, NO3-N was 0.139 to 0.144 mg/L, P04-P was 0.038 to 0.062 L, TN is 2.267 to 2.828mg/L, TP is 0.274 to 0.277mg/L, and CODMn is 15.46 ~ 15.51 mg/L. ponds with phytoplankton dominant species of cyanobacteria and green algae less than 10 pm. In Experiment II, SD in the main grass carp pond is 12~37 cm and TN is 2.85 to 5.87 mg/L. With the high characteristics of CODMn, it is suggested that the filter feeding type should be properly adopted in the pond to reduce the culture pollution. (2) from August 29, 2011 to September 1st, the species composition, biomass and physical and chemical environmental factors in the pond of 10 mussels (Hyriopsis cumingii) in maple bridge, Zhejiang province were analyzed. 51 genera / species of phytoplankton were observed in the pond. The dominant species were flat cracked algae, Microcystis, Chlorella and algae; phytoplankton biomass was 0.71 to 8.01 * 108 cell/L, 71% to 97% were cyanobacteria. The average value of SD in the pond was 33 cm, DO was 4~12 mg/L, TN was 1.933 4.062mg/L, TP was 0.154 to 1.010 mg/L.CODMn, 6.49-10.06 mg/L, indicating that mussel triangulation Aquaculture ponds have higher DO, SD, TN, TP, CODMn and TN/TP lower characteristics.RDA analysis shows that water temperature is the main environmental factor affecting the common species of phytoplankton in ponds, indicating that the composition of phytoplankton community in similar ponds is close. In view of the characteristics of TN in the pond, TP, CODMn and TN/TP are lower in the pond, it is suggested to increase the omnivorous. It was found that fish mixed ponds could provide sufficient nutritional support for the growth of Hyriopsis cumingii by experiments (1) and (2). (3) the yield and water quality of Hyriopsis cumingii in grass carp, crucian carp, carp and Bighead bighead carp in the mixed system of grass carp, carp, carp and bighead carp were tested by the 78 D 2 treatments were set up to treat I mixed grass carp, crucian carp, silver carp and bighead carp, treatment II on the basis of treatment I, based on the proportion of fish: mussel =1:1. During the experiment, the species composition and biomass of phytoplankton, primary productivity (P), community respiration (R), DO, pH, SD, carbonate ion (C032-), bicarbonate ion (HCO3-), chloroionization were analyzed. Cl-, S042-, calcium ion (Ca2+), magnesium ion (Mg2+), Na++K+, total alkalinity, total hardness, TAN, NO2-N, NO3-N, PO4-P, TN, TP, total organic carbon (TOC) and biochemical oxygen consumption. The yield of bighead carp was slightly lower than that of the treatment I, and it showed that the production of grass carp, carp, carp and bighead carp in the mixed system of 1:1 did not lead to the decline of the yield of grass carp and carp, but the yield of carp was reduced. The diversity of phytoplankton (Shannon-Weaver diversity index, Margalef richness index, Pielou evenness index and species) were treated. P, P/R, SD and DO were slightly higher than that of treatment I, while ammonia nitrogen, active phosphorus, TN, TP, CODMn, BOD5 and TOC were slightly lower than the latter, indicating that the support of Hyriopsis cumingii in the mixed culture system could significantly reduce the Ca2+ concentration in aquaculture water, and to a certain extent, increase the diversity of phytoplankton, P and DO and reduce the results. The moderate breeding of Hyriopsis cumingii in aquaculture system can improve the economic benefits of aquaculture and reduce the accumulation of nitrogen, phosphorus and organic waste in the aquaculture system. (4) the effects of the density of Hyriopsis cumingii on the yield and water quality of the mixed system of grass carp, carp, carp and bighead carp were tested by the 90 d enclosure experiment. M1 (85 ind/ septum), M2 (55 ind/ septum), M3 (25 ind/ septum), C (0 ind/ perinosum). A 5 ind. result of intercalation of mussel in the enclosure of each clam was found. With the increase of the density of Hyriopsis cumingii, the fish production performance (grass carp and crucian carp weight gain, fish yield and utilization efficiency), phytoplankton index (community diversity, biomass and function), SD, were found, SD, and SD. Increment (DO, pH, Ca2+, alkalinity, hardness, TAN, TN, TP, CODMn and BOD5) increased gradually, while the growth and Pearl yield of Hyriopsis cumingii decreased gradually. The environmental factors affecting the growth of grass carp, crucian carp, silver carp and bighead carp were mainly the biomass of cyanobacteria, phytoplankton diversity index, alkalinity and TAN. seasonal changes to the culture environment. The effect of Hyriopsis cumingii is greater than that of mussel density change. The results show that mussel can improve fish production and resource utilization to a certain extent, and improve phytoplankton community structure, function and hydrochemical index. The effect of Hyriopsis cumingii is closely related to the stocking density of Hyriopsis cumingii. To alleviate the eutrophication process in the mixed system, but not to balance its harm. Therefore, new technologies need to be developed to further reduce the culture waste in the system. (5) two species of mussel density (5 intercalated mussels, VS 5 intercalated +55 non intercalated mussels) and two species of tilapia were tested through the 90 d septum test. The effects of grass carp, carp, carp, carp and Bighead Carp mixed system on the production performance and water quality. The results showed that the tilapia significantly increased the fish production and the concentration of TAN, CODMn and BOD5 in the water body, and significantly reduced the weight gain and FCR (P0.05) of the individual Hyriopsis Hyriopsis cumingii. Its function reduces N, P and organic matter in water, while tilapia decreases the growth of other fishes and Hyriopsis cumingii, pearl yield, diversity and function of phytoplankton community. The results show that increasing the density of Hyriopsis cumingii can improve fish production performance and culture environment to a certain extent, and the addition of tilapia significantly promotes fish production and nutrition. Use efficiency, but limit the growth and Pearl yield of other fishes and lead to the deterioration of the culture environment. Therefore, the stocking density should be controlled in the fish mixed ponds. (6) the fish mixed system is constructed with grass carp, crucian carp, silver carp and bighead carp, and the microbiological products (added or not added) and Hyriopsis cumingii (suspended or not suspended) are tested by the 60 d enclosure experiment. The results showed that the comprehensive effects of Hyriopsis cumingii and carp + carp + bighead carp + bighead carp + Hyriopsis cumingii could significantly improve the production of fish (P0.05). The two can promote the growth of fish, increase the production of fish and reduce the FCR and maintain the diversity of phytoplankton. The growth of cyanobacteria, the increase of primary productivity, the turbidity of the water and the concentration of PO4-P, TN, CODMn and BOD5 (P0.05). The results showed that the addition of Hyriopsis cumingii and microorganism in the grass carp, carp, silver carp and Bighead Carp mixed system could improve the production performance and improve the water quality to a certain extent, and the synergistic effect of the two were better. Therefore, the increase of the synergistic effect could be considered. (7) the effects of different bait fish density and microbial products on the production performance and water quality of mussel integrated aquaculture system were tested by the 93 D enclosure experiment. The density of the bait fish (grass carp: Carassius auratus =2:1) was set up to 20 grass carp +10 crucian carp or 40 grass carp +20 crucian carp, and the microbial products (commercial products) EM bacteria were added or not added. 20 mussels and 20 non intercalating mussels were raised in each enclosure. It was found that increasing the density of the bait fish significantly reduced the growth of grass carp, SD and N/P (P0.05), and decreased the growth of mussels, pearl yield and nutrient utilization efficiency (P0.05), and significantly increased NO2-N, PO4-P, TN, TP, TOC, CODMn, BOD5, phytoplankton. Biomass and cyanobacteria ratio (P0.05), relative increase of fish yield (P0.05).EM bacteria significantly inhibited the growth of mussel (P0.05), relative decrease of Pearl yield and TAN, TOC, CODMn, BOD5, phytoplankton biomass and cyanobacteria ratio, promote the growth of grass carp and crucian carp, fish yield and utilization efficiency (P0.05). .SD, NO2-N and TOC are the main environmental factors affecting the growth of fish and mussels. The results show that increasing the density of bait fish will damage the Pearl yield and accelerate the process of water eutrophication, while adding EM bacteria can not balance the Pearl yield and water quality caused by the increase of the density of grass carp and Carassius auratus. The growth of EM bacteria is unfavorable to the growth of Hyriopsis cumingii. Therefore, it is prudent to increase the density of bait fish and add EM bacteria to the integrated aquaculture system of Hyriopsis cumingii and grass carp, crucian carp, carp and bighead carp. (8) it is speculated that the failure of EM bacteria in the experiment (7) is related to the unaeration in the process of testing. The test of 93 D septum is not necessary. The effects of the density and aeration of the same bait fish on the production performance and water quality of the microorganism products (commercial EM bacteria). Two kinds of grass carp and crucian carp stocking density (20 grass carp and 10 crucian carp VS 40 grass carp and 20 crucian carp) and two aeration measures (aeration VS non aeration). And 20 non intercalated mussel, 8 silver carp and 2 bighead carp. Commercial EM bacteria were regularly added to each septum. The results showed that the increase of grass carp and crucian carp density significantly reduced the weight gain of grass carp, increased the respiration of the phytoplankton community, increased TOC, total carbon (TC), TN, TP, N/P, CODMn and BOD5 concentration (P0.05). Aeration was relatively improved in fish production and nutrient utilization efficiency and reduced TN and TP in water bodies. CODMn and BOD5 concentration (P0.05). The results showed that in the integrated culture system of Hyriopsis cumingii and grass carp, crucian carp, silver carp and bighead carp, the production performance and water quality of low density bait fish were better. Aeration could improve the use effect of microbial products. (9) different microbial products (nobbi clean water agent, medium water brand compound) were tested by the 31d tank experiment. The effects of bacteria and EM bacteria on the growth and water quality of fish in the mixed system of grass carp, crucian carp and silver carp were treated by 4 treatments: Gagano green water purifying agent (NO), adding medium water brand compound bacteria (PB), adding EM bacteria (EM) and blank control group (BL). There were no significant effects on fish survival, weight gain, feed utilization, SD, SD, hydrochemical indexes (DO, pH, NH3-N, NO2-N, NO3-N, PO4-P, TN, TP, CODMn) and phytoplankton indicators (species composition, biomass, Chl a concentration and diversity index). This study indicated that the addition of microbial products to grass carp, crucian carp and silver carp in the short term (31) The results showed that: (1) fish mixed ponds could provide sufficient nutritional support for Hyriopsis cumingii; (2) the suspension culture of Hyriopsis cumingii was beneficial to improving the economic and ecological benefits of the fish mixed culture system, and the improvement effect was related to the stocking density of Hyriopsis cumingii. (3) the cultivation of tilapia in the integrated aquaculture system can increase fish production, reduce the growth of other fishes and mussels and deteriorate the culture environment. (4) the use of commercial microorganisms in the comprehensive culture of mussels can improve fish production performance and aquaculture to a certain extent, but it can not solve fish culture. In addition, the use of microbial products is not conducive to the growth of Hyriopsis cumingii; (5) aeration can be used.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S964


本文編號(hào):1970813

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/nykjbs/1970813.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6f64a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com