AAV9-hIGF-1對mdx小鼠炎癥反應的影響及機制研究
本文選題:DMD + AAV9; 參考:《河北醫(yī)科大學》2017年碩士論文
【摘要】:目的:Duchenne型肌營養(yǎng)不良癥(Duchenne muscular dystrophy,DMD)是進行性肌營養(yǎng)不良癥中最常見的致死性X連鎖隱性遺傳肌病。該病是由于dystrophin基因發(fā)生了突變,使其編碼的抗肌萎縮蛋白的完全或部分缺失,導致肌纖維膜完整性、穩(wěn)定性破壞,最終導致肌肉的變性、壞死。DMD的主要臨床表現(xiàn)為進行性肌肉無力、肌萎縮和腓腸肌假性肥大,隨著疾病進展,DMD患者通常于12歲左右喪失行走功能,20歲左右因呼吸或心力衰竭死亡。DMD患者肌肉的主要病理特征為肌纖維直徑大小不等,可見肌纖維肥大、萎縮、變性和壞死,炎性細胞浸潤,肌纖維最終脂肪化和纖維化。然而dystrophin蛋白的缺失所致的肌細胞膜的不穩(wěn)定性及機械損傷并不能完全解釋DMD骨骼肌的持續(xù)性損害,在DMD的超早期階段甚至在肌纖維的壞死發(fā)生之前,就已經存在炎性信號通路的異常激活。近年來,越來越多研究表明炎性反應及炎性通路的活化在DMD的發(fā)生和疾病進展中發(fā)揮著極其關鍵的作用。對炎性反應這一重要靶點的調節(jié)是DMD治療極具前景的治療方法。C57BL/10ScSn-Dmdmdx/JNju鼠,簡稱mdx小鼠,是由于C57BL/10小鼠X染色體的23號外顯子發(fā)生了點突變,導致其編碼的dystrophin功能缺失而構建的DMD模型鼠,是目前研究DMD應用最廣泛的動物模型。基因治療是將正常的基因或有治療作用的基因通過一定方式導入靶細胞,以糾正基因的缺陷或者發(fā)揮治療作用。腺相關病毒載體(Adeno-associated virus,AAVs)是新近發(fā)展最為常用且具有臨床應用前景的基因載體之一。AAVs可以長期高效表達,具有對機體低毒性、低細胞免疫源性和低致病性等優(yōu)勢。系統(tǒng)性評估表明AAV9可以有效地轉染至骨骼肌和心肌。胰島素樣生長因子-l(insulin-like growth factor 1,IGF-1)是細胞增殖、分化和成熟過程中的重要營養(yǎng)因子。已有研究表明肌肉中特異性表達IGF-1基因可以增加mdx小鼠的肌纖維的再生,降低血清CK值且一定程度上改善肌力,這些效應是通過激活P13K/Akt信號通路實現(xiàn)的。IGF-1還可以從調節(jié)炎癥反應方面作用于骨骼肌,有研究指出IGF-1是通過抑制巨噬細胞移動抑制因子(macrophge migration inhibitory factor,MIF)、高遷移率族蛋白B(high mobility group protein-1,HMGB1)和核轉錄因子kappa B(nuclear factor-kappa B,NF-κB)的活性起到抗炎作用。之前的研究多集中在IGF-1對肌纖維再生的影響,很少關注IGF-1對肌肉炎癥的作用?紤]到DMD是一種累及全身肌肉的肌病,尾靜脈注射的方式更適宜臨床應用。我們的研究是利用AAV9作為載體,攜帶hIGF-1基因一次性經尾靜脈注射給予6周齡的mdx小鼠治療。6周后通過常規(guī)組織病理染色,免疫熒光和蛋白免疫印跡(Western blot)技術評估m(xù)dx小鼠的炎癥反應,并進一步探究hIGF-1的作用機制。方法:選取周齡6周的mdx小鼠,隨機分為實驗組(AAV9-hIGF-1組)和實驗對照組(AAV9-GFP組),正常對照組為選取同等周齡的C57/10野生型小鼠,每組5只小鼠。給予實驗組mdx小鼠尾靜脈注射AAV9-hIGF-1病毒200μl(1×1012vg/ml),實驗對照組mdx小鼠尾靜脈注射AAV9-GFP病毒200μl(1×1012vg/ml),各組小鼠接受病毒尾靜脈注射后同等條件下觀察6周后取材。小鼠麻醉后分別剪取骨骼肌和心肌,進行包埋冰凍處理。熒光顯微鏡下觀察肌肉組織中AAV9在mdx小鼠的轉染情況后,觀察hIGF-1蛋白的表達。HE染色、ACP染色觀察炎癥反應的變化。檢測炎癥相關蛋白CD68,PP65的表達。結果應用spss13.0對數(shù)據進行分析。結果:1 AAV9在mdx小鼠體內的表達mdx小鼠不同組織中GFP均有所表達,其中脛骨前肌GFP表達最多,肱三頭肌表達次之,余組織僅可見較少量表達。2 AAV9-hIGF-1在mdx小鼠脛骨前肌的表達AAV9-hIGF-1組mdx小鼠脛骨前肌hIGF-1的表達效率較高,但仍有部分肌纖維未見表達。3 AAV9-hIGF-1對mdx小鼠肌肉的炎癥反應的影響HE染色和ACP染色觀察到AAV9-GFP組可見散在分布的吞噬現(xiàn)象,數(shù)個融合成片的炎細胞浸潤,AAV-9hIGF-1組炎細胞浸潤較分散,可見少量小灶狀炎細胞浸潤。CD68是巨噬細胞可靠的標記物,通過免疫熒光染色觀察到AAV9-hIGF-1組CD68+細胞較AAV-GFP組減少。對脛前肌炎癥區(qū)域所占百分比進行統(tǒng)計學分析,AAV-hIGF-1組為(1.78±0.47%),低于AAV-GFP組(3.4±1.22%),高于正常組(0%),差異均有統(tǒng)計學意義(p0.05)。4 NF-κB信號通路的變化運用Western-bloth觀察到AAV9-hIGF-1減少了PP65的表達,AAV-hIGF-1組為(0.45±0.07%),低于AAV-GFP組(0.76±0.13%),高于正常組(0.38±0.06%),差異有統(tǒng)計學意義。結論:1通過尾靜脈注射,AAV9能夠在mdx小鼠的多部位表達,其中脛前肌中表達最多。2 AAV9-hIGF-1尾靜脈注射治療能減輕了mdx小鼠肌肉的炎癥反應。3推測hIGF-1是通過下調NF-κB信號通路起到抗炎的作用。
[Abstract]:Objective: Duchenne muscular dystrophy (DMD) is the most common fatal X linked recessive myopathy in progressive muscular dystrophy. This disease is due to the mutation of the dystrophin gene, which encodes the complete or partial deletion of the amyotrophic protein, resulting in the integrity of the myofibrillar membrane, and the stability of the muscular dystrophy. The main clinical manifestations of.DMD are progressive muscle weakness, muscular atrophy and pseudohypertrophy of the gastrocnemius. As the disease progresses, the DMD patients usually lose the walking function around 12 years of age, and the main pathological features of the muscles of the patients with respiratory or heart failure at about 20 years old are the muscle fiber diameter. See muscle fiber hypertrophy, atrophy, degeneration and necrosis, inflammatory cell infiltration, muscle fiber final adipose and fibrosis. However, the instability of the myoblast and mechanical damage caused by the deletion of dystrophin protein can not fully explain the persistent damage of the DMD skeletal muscle, even before the necrosis of the muscle fibers in the ultra early stages of DMD. There has been an abnormal activation of inflammatory signaling pathways. In recent years, more and more studies have shown that inflammatory responses and inflammatory pathways play a crucial role in the development of DMD and the progression of the disease. The regulation of the important target of inflammatory response is a promising treatment for DMD,.C57BL/10ScSn-Dmdmdx/JNju rats, for short, mdx Mice, due to the point mutation of the exon 23 of the X chromosome of the C57BL/10 mouse, which lead to the deletion of the encoded dystrophin function, is the most widely used animal model in the study of the DMD application. Gene therapy is to import the normal gene or the therapeutic basis into the target cells in a certain way to correct the gene. Adeno-associated virus (AAVs) is one of the most commonly used and clinically promising gene vectors,.AAVs, which can be expressed in a long and efficient way. It has the advantages of low toxicity, low cellular immunity and low pathogenicity. Systematic assessment shows that AAV9 can be effective. Transfected into skeletal muscle and myocardium. Insulin like growth factor -l (insulin-like growth factor 1, IGF-1) is an important nutrient factor in cell proliferation, differentiation and maturation. Studies have shown that the specific expression of IGF-1 gene in muscle can increase the rebirth of muscle fibers in mdx mice, reduce the value of serum CK and improve muscle strength to a certain extent, These effects, which are achieved by activating the P13K/Akt signaling pathway, can also be used to regulate the inflammatory response in the skeletal muscle. There is a study that IGF-1 is through the inhibition of the macrophage migration inhibitory factor (macrophge migration inhibitory factor, MIF), the high mobility group of egg white B (high mobility group) and nuclear transcription. The activity of factor kappa B (nuclear factor-kappa B, NF- kappa B) plays an anti-inflammatory role. Previous studies focused on the effect of IGF-1 on muscle fiber regeneration, and little attention was paid to the effect of IGF-1 on muscle inflammation. Considering that DMD is a myopathy involving whole body muscles, the formula for the injection of the tail vein is more suitable for clinical application. Our study uses AAV9. As a carrier, the mdx mice of 6 weeks of age with hIGF-1 gene were injected into the tail vein for.6 weeks to be treated with routine histopathological staining, immunofluorescence and protein immunoblotting (Western blot) technique to evaluate the inflammatory response of mdx mice, and to further explore the mechanism of the action of hIGF-1. Methods: the mdx mice of 6 weeks of age were selected and randomly divided. In the experimental group (group AAV9-hIGF-1) and the experimental control group (group AAV9-GFP), the normal control group was selected as the same week old C57/10 wild type mice, with 5 mice in each group. The experimental group was given the tail vein of the mdx mice with AAV9-hIGF-1 virus 200 L (1 x 1012vg/ml), and the experimental control group was injected with AAV9-GFP virus 200 mu L (1 x 1012vg/ml) in the tail vein of the experimental control group. Each group was small. The mice were treated with the same condition after the tail vein injection of the virus for 6 weeks. The mice were harvested for 6 weeks. The mice were cut into the skeletal muscle and the myocardium to be frozen. The transfection of the mdx mice in the muscle tissue was observed under the fluorescence microscope. The expression of hIGF-1 protein was observed by.HE staining, and the changes of the inflammatory reaction were observed by ACP staining. Results of the expression of related protein CD68, PP65. Results the results were analyzed with SPSS13.0. Results: 1 AAV9 expressed GFP in different tissues of mdx mice expressed in mdx mice. The expression of GFP in the anterior tibial muscle was the most, the expression of triceps brachii was the second, and the remaining tissue was only a small amount of.2 AAV9-hIGF-1 in the tibial anterior muscle of mdx mice. The expression of hIGF-1 in the anterior tibial muscle of mdx mice was higher than that in -hIGF-1 group, but there were still some muscle fibers that did not express the effect of.3 AAV9-hIGF-1 on the inflammatory response of the mdx mice. HE staining and ACP staining showed that there were scattered phagocytosis in the AAV9-GFP group. Several inflammatory cells were infiltrated by fusion, and the infiltration of inflammatory cells in AAV-9hIGF-1 group was more than that of mdx mice. A small amount of small focal inflammatory cells infiltrated.CD68 was a reliable marker of macrophage. The decrease of CD68+ cells in group AAV9-hIGF-1 was observed by immunofluorescence staining. The percentage of inflammatory areas in the anterior tibial muscle was statistically analyzed, in group AAV-hIGF-1 (1.78 + 0.47%), lower than that in group AAV-GFP (3.4 + 1.22%), higher than that in the normal group (0%), The difference was statistically significant (P0.05).4 NF- kappa B signaling pathway changes using Western-bloth to reduce the expression of PP65, AAV-hIGF-1 group is (0.45 + 0.07%), lower than the AAV-GFP group (0.76 + 0.13%), higher than the normal group (0.38 + 0.06%), the difference has statistical significance. Conclusion: 1 via the tail vein, AAV9 can be more in mdx mice. The expression of site, in which the most.2 AAV9-hIGF-1 tail vein was expressed in the anterior tibial muscle, could reduce the inflammatory response to the muscle in mdx mice.3 speculates that hIGF-1 plays an anti-inflammatory role by downregulating the NF- kappa B signal pathway.
【學位授予單位】:河北醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R746.2
【相似文獻】
相關期刊論文 前10條
1 傅士波;腹部照射所致炎癥反應刺激造血[J];國外醫(yī)學(放射醫(yī)學核醫(yī)學分冊);2001年06期
2 ;我國科學家發(fā)現(xiàn)調節(jié)人體炎癥反應新機制[J];中國科技產業(yè);2007年08期
3 ;健康老人抑郁癥狀與炎癥反應相關[J];浙江中西醫(yī)結合雜志;2010年04期
4 唐宏;;炎癥反應 中國科學家談科學[J];科學觀察;2009年04期
5 張熒熒;李淵越;韓家淮;;炎癥反應,健康衛(wèi)士還是癌癥幫兇?[J];中國基礎科學;2012年02期
6 ;發(fā)展炎癥反應概念——哺乳動物抗菌肽及其基因表達調控研究[J];中國病理生理雜志;2001年08期
7 段金成;丁志峰;和紅兵;;炎癥反應介質對炎癥影響機制的探討[J];昆明醫(yī)學院學報;2009年S2期
8 彭代智;;燒傷后炎癥反應的病因、分子機制及防治對策[J];中華燒傷雜志;2005年06期
9 李成龍;屠偉峰;;炎癥反應在胃黏膜防御中的作用[J];實用醫(yī)學雜志;2008年03期
10 趙紅梅;阮海華;;不同鹽離子對單核細胞炎癥反應的影響[J];安徽農業(yè)科學;2011年10期
相關會議論文 前10條
1 姜勇;;炎癥反應的研究現(xiàn)狀與未來[A];中國病理生理學會受體、腫瘤和免疫專業(yè)委員會聯(lián)合學術會議論文匯編[C];2010年
2 歐陽文;何慧娟;王意;;圍術期炎癥反應與術后認知功能障礙(英文)[A];中華醫(yī)學會第二十次全國麻醉學術年會論文匯編[C];2012年
3 張衛(wèi)茹;侯凡凡;劉尚喜;郭志堅;周展眉;;晚期糖基化終產物增加動脈粥樣硬化部位的炎癥反應[A];“中華醫(yī)學會腎臟病學分會2004年年會”暨“第二屆全國中青年腎臟病學術會議”論文匯編[C];2004年
4 濮紅梅;尹忠誠;劉秉成;李勝開;馮錦紅;;血液透析患者血清IL-10與炎癥反應及營養(yǎng)狀況的關系研究[A];中華醫(yī)學會腎臟病學分會2006年學術年會論文集[C];2006年
5 陸志偉;黃慧;姜純國;徐作軍;;輔助性T淋巴細胞與特發(fā)性肺間質纖維化關系的初步研究[A];中華醫(yī)學會呼吸病學年會——2011(第十二次全國呼吸病學學術會議)論文匯編[C];2011年
6 俞佳;王仲;;內源性氣體信號分子硫化氫與炎癥反應[A];中華醫(yī)學會急診醫(yī)學分會第十三次全國急診醫(yī)學學術年會大會論文集[C];2010年
7 周曉艷;徐營營;謝兆宏;許繼平;畢建忠;;炎癥反應與神經系統(tǒng)變性疾病的研究進展[A];2011全國老年癡呆與衰老相關疾病學術會議第三屆山東省神經內科醫(yī)師(學術)論壇論文匯編[C];2011年
8 張會云;崔克亮;曹書華;;炎癥反應,凝血機制與MODS的發(fā)病機理的關系[A];中華醫(yī)學會急診分會第五屆全國危重病學術交流會論文匯編[C];2004年
9 燕艷麗;邱海波;楊毅;許紅陽;王麗;孫輝明;;急性呼吸窘迫綜合征家兔肺部及肺外器官炎癥反應的變化[A];第六屆全國危重病學術交流大會論文匯編[C];2005年
10 周曉艷;徐營營;謝兆宏;許繼平;畢建忠;;炎癥反應與神經系統(tǒng)變性疾病的研究進展[A];山東省第三次中西醫(yī)結合神經內科學術研討會論文匯編[C];2011年
相關重要報紙文章 前10條
1 楊一唯邋記者 王春;我科學家發(fā)現(xiàn)調節(jié)人體炎癥反應新機制[N];科技日報;2007年
2 王蔚;我國科學家發(fā)現(xiàn)調節(jié)人體炎癥反應新機制[N];大眾科技報;2007年
3 記者 徐瑞哲;第三者“插足”抑制炎癥反應[N];解放日報;2007年
4 記者白毅;炎癥反應中淋巴結重塑新機制被揭示[N];中國醫(yī)藥報;2011年
5 記者 耿挺;尋找炎癥反應蛋白[N];上?萍紙;2007年
6 信文;“IL-10”蛋白調節(jié)炎癥反應[N];醫(yī)藥經濟報;2002年
7 知陶;把炎癥反應排除在外[N];醫(yī)藥經濟報;2002年
8 韓秀霞;Capase-12蛋白參與炎癥反應[N];中國醫(yī)藥報;2005年
9 范曉艷;免疫系統(tǒng)“出錯” 救星變?yōu)男荹N];醫(yī)藥經濟報;2003年
10 高春東;軟組織挫傷用抗生素無效[N];大眾衛(wèi)生報;2004年
相關博士學位論文 前10條
1 段二珍;HMGB1在PRRSV感染中的作用及Glycyrrhizin抗PRRSV活性研究[D];華中農業(yè)大學;2014年
2 韋超;GIT2抑制TLR介導的炎癥反應[D];北京協(xié)和醫(yī)學院;2013年
3 楊瀟;草魚白細胞介素1β誘導表達的負調控機制及其在炎癥反應中的意義[D];電子科技大學;2014年
4 NURULIARIZKI SHINTA;[D];華中農業(yè)大學;2016年
5 張宇絲;漢灘病毒感染引起血管內皮細胞炎癥因子的產生及誘發(fā)炎癥反應的機制[D];第四軍醫(yī)大學;2016年
6 吳越;載脂蛋白E及其擬肽COG1410對蛛網膜下腔出血后早期腦損傷和炎癥反應的影響[D];重慶醫(yī)科大學;2016年
7 張兵;Mer受體酪氨酸激酶調控脂磷壁酸誘導的炎癥反應及在金葡菌吞噬中的作用研究[D];安徽醫(yī)科大學;2016年
8 趙繼萍;抑制STAT3信號通路活化對LPS誘導的ARDS炎癥反應保護作用的機制研究[D];山東大學;2016年
9 李亞玲;S1PR1調控不同毒力新城疫病毒誘導炎癥反應的機制研究[D];華南農業(yè)大學;2016年
10 林超;NLRP3介導的神經炎癥反應在顱腦創(chuàng)傷中的作用及機制研究[D];南京醫(yī)科大學;2017年
相關碩士學位論文 前10條
1 要萌萌;Mdx小鼠骨骼肌中炎癥反應和mpeg1的表達[D];河北醫(yī)科大學;2015年
2 張曉瑩;去鐵胺對脂多糖誘發(fā)的小鼠中樞神經炎癥反應與記憶損傷的改善作用[D];中國人民解放軍醫(yī)學院;2015年
3 陳凱;纈沙坦對糖尿病大鼠腎臟內質網應激及炎癥反應的抑制作用[D];安徽醫(yī)科大學;2015年
4 張凱;MiR-322負調控LPS誘導炎癥反應的機制研究[D];華中農業(yè)大學;2015年
5 李雪寒;HSPA12B在抑制LPS所致內皮細胞炎癥反應中的必要性研究[D];南京醫(yī)科大學;2015年
6 曹春琪;麥冬不同部位對巨噬細胞炎癥反應的調節(jié)作用及其物質基礎研究[D];北京中醫(yī)藥大學;2016年
7 穆衛(wèi)濤;LPS誘導雞幾個炎癥反應相關基因的表達調控研究[D];哈爾濱師范大學;2016年
8 趙蘭婷;NOTCH信號通路對慢性阻塞性肺疾病炎癥反應的影響及機制研究[D];蘭州大學;2015年
9 陶麗妃;血管緊張素轉換酶2激動劑抑制視網膜色素上皮細胞炎癥反應的作用及機制[D];重慶醫(yī)科大學;2016年
10 何文;PAK4在乙型腦炎病毒感染介導神經膠質細胞炎癥反應中的作用研究[D];華中農業(yè)大學;2016年
,本文編號:2000534
本文鏈接:http://www.sikaile.net/shoufeilunwen/mpalunwen/2000534.html