基于多源遙感數(shù)據(jù)的建筑工程資產(chǎn)投資態(tài)勢監(jiān)測
本文選題:固定資產(chǎn)投資 切入點:遙感監(jiān)測 出處:《中國地質(zhì)大學(北京)》2016年博士論文 論文類型:學位論文
【摘要】:固定資產(chǎn)投資對城市景觀格局變化、城市經(jīng)濟發(fā)展有舉足輕重的作用,其動態(tài)監(jiān)測技術(shù)研究也是近年來的研究熱點。本文選取了河南省中牟縣和重慶市北碚區(qū)兩個研究區(qū),以固定資產(chǎn)投資與城市擴張、投資項目特征提取方法、城市景觀格局的驅(qū)動機制作為切入點監(jiān)測不同尺度的投資態(tài)勢。主要研究內(nèi)容與結(jié)論如下:(1)通過構(gòu)建1990年至2010年的全國各區(qū)域全社會固定資產(chǎn)投資面板數(shù)據(jù)并進行系數(shù)修正,結(jié)合遙感人工解譯的1990年至2010年的632個城市的主城區(qū)擴張面積空間分布,建立二者的回歸模型,揭示了宏觀尺度固定資產(chǎn)投資規(guī)模的趨勢及分布規(guī)律,提出利用遙感監(jiān)測建成區(qū)擴張監(jiān)測投資規(guī)模的方法。揭示了固定資產(chǎn)投資存在的“虹吸”效應。數(shù)據(jù)說明,隨著中國改革的不斷推進,投資規(guī)模與擴張面積的相關(guān)性持續(xù)減弱,投資對經(jīng)濟的驅(qū)動力權(quán)重有所下降。單位擴張面積的固定資產(chǎn)投資額這一土地投入指標顯示,中國城市的擴張集約節(jié)約效果顯著。(2)提出了針對高分辨率、超高分辨率遙感數(shù)據(jù)的投資特征提取方法。實驗證明,HSD特征訓練得到的隨機森林機器學習以提取目標建筑物的方法為從超高分辨率遙感影像中剔除土壤這一方向提供了一種魯棒性較強的方法。而且,隨機森林分類器移植性遠遠高于傳統(tǒng)方法,可用于提取投資監(jiān)測領(lǐng)域的多種監(jiān)測目標。此外,針對塔吊這一特殊的投資項目在建配套設(shè)備,使用數(shù)學形態(tài)學和幾何特征相結(jié)合的算法進行精確的定位和數(shù)量提取,并進行了實驗驗證。(3)建立了適合遙感投資監(jiān)測的包括15個類別的投資項目監(jiān)測體系。針對可監(jiān)測項目構(gòu)建了特征指數(shù)BBI及IPBI,應用面向?qū)ο蟮姆诸愃惴?結(jié)合光學紋理等多種特征值,對彩板房等臨時建筑物等對象進行解譯,有效獲取了微觀尺度的投資熱點分布。(4)通過對平原研究區(qū)中牟縣和山地研究區(qū)北碚區(qū)的近15年四個時相的土地利用景觀類別動態(tài)的監(jiān)測,構(gòu)建基于平原與山區(qū)的景觀格局指數(shù)框架,對不同固定資產(chǎn)投資結(jié)構(gòu)對景觀格局變化的驅(qū)動差異性進行探索性分析。
[Abstract]:Fixed asset investment plays an important role in the change of urban landscape pattern and the development of urban economy. The research on dynamic monitoring technology is also a hot topic in recent years. This paper selects Zhongmou County in Henan Province and Beibei District in Chongqing as two research areas. The method of extracting the characteristics of fixed assets investment and urban expansion, The driving mechanism of urban landscape pattern is used as the starting point to monitor the investment situation of different scales. The main research contents and conclusions are as follows: (1) by constructing the data of fixed assets investment panel of the whole society from 1990 to 2010 in the whole country and modifying the coefficient, Combined with the spatial distribution of the expansion area in 632 cities from 1990 to 2010, the regression model of them is established, and the trend and distribution law of the scale of fixed asset investment in macro scale are revealed. This paper puts forward a method of using remote sensing to monitor the investment scale of the established area, and reveals the siphon effect of the fixed asset investment. The data show that the correlation between the investment scale and the expansion area continues to weaken with the development of China's reform. Investment has a lower driving force on the economy. Investment in fixed assets per unit expansion area, a land input index, shows that the intensive expansion of Chinese cities has significant savings. An investment feature extraction method for ultra-high resolution remote sensing data. It is proved by experiments that the method of random forest machine learning based on HSD feature training to extract target buildings is to remove soil from ultra-high resolution remote sensing images. Provides a robust approach. And, The transplantability of stochastic forest classifier is much higher than that of traditional methods, and it can be used to extract various monitoring targets in the field of investment monitoring. Using mathematical morphology and geometric features of the algorithm for accurate location and quantity extraction, The monitoring system of 15 kinds of investment items suitable for remote sensing investment monitoring is established. The feature index BBI and IPBI are constructed for the monitored projects, and the object-oriented classification algorithm is applied. Combining with the optical texture and other characteristic values, the objects such as temporary buildings, such as color plate houses, are interpreted. The distribution of investment hot spots on the micro scale is obtained effectively. The dynamic monitoring of land use landscape types in the past 15 years in Zhongmou County, plain research area, and Beibei, mountainous research area, is carried out. The landscape pattern index framework based on plain and mountain area is constructed to analyze the driving difference of different fixed asset investment structure on landscape pattern change.
【學位授予單位】:中國地質(zhì)大學(北京)
【學位級別】:博士
【學位授予年份】:2016
【分類號】:F283
【參考文獻】
相關(guān)期刊論文 前10條
1 雷艷慧;;我國固定資產(chǎn)投資與經(jīng)濟增長關(guān)系的淺析[J];現(xiàn)代商業(yè);2015年12期
2 陸健偉;;固定資產(chǎn)投資與GDP關(guān)系的實證研究——基于非參數(shù)回歸預測分析[J];商;2015年14期
3 趙迪;余良昊;高迪;;GDP與出口總額以及全社會固定資產(chǎn)投資的VAR模型分析[J];企業(yè)改革與管理;2015年06期
4 韋曉茜;張芳;;北京市通州區(qū)固定資產(chǎn)投資供求預測與平衡設(shè)計[J];中國集體經(jīng)濟;2015年01期
5 譚銳;;住房投資性需求與中國城市規(guī)模擴張——基于空間均衡模型的分析[J];經(jīng)濟評論;2013年05期
6 李月臣;劉春霞;閔婕;王才軍;張虹;汪洋;;三峽庫區(qū)生態(tài)系統(tǒng)服務(wù)功能重要性評價[J];生態(tài)學報;2013年01期
7 賀振;趙文亮;賀俊平;;鄭州市城市擴張遙感動態(tài)監(jiān)測及驅(qū)動力分析[J];地理研究;2011年12期
8 戴子剛;騰紅琴;;我國投資與經(jīng)濟增長關(guān)系研究——基于多項式分布滯后模型[J];天府新論;2011年05期
9 趙春貴;孫艷玲;;淺談黑龍江省固定資產(chǎn)投資的季節(jié)波動[J];統(tǒng)計與咨詢;2010年05期
10 楊山;周蕾;陳升;季增民;;大規(guī)模投資建設(shè)背景下城市過度擴張的約束機制——以無錫市為例[J];地理科學進展;2010年10期
,本文編號:1559556
本文鏈接:http://www.sikaile.net/shoufeilunwen/jjglss/1559556.html