基于三維激光掃描的點云數(shù)據(jù)逆向重建算法研究
文內(nèi)圖片:
圖片說明:邊緣數(shù)據(jù)區(qū)域選取示意圖
[Abstract]:In recent years, with the development of three-dimensional laser scanning technology, it has been widely used in surveying, industrial control and other fields. Because point cloud data has the characteristics of convenient storage and flexible calculation, it has become an important form of metadata in computer graphics. Point cloud reverse reconstruction is an important technology in point cloud computing. With the development of laser scanning technology and the complexity of scanning object surface, its massive point cloud data brings new challenges to point cloud data reverse reconstruction. In this paper, based on the detailed study of the reverse reconstruction technology of point cloud data in recent years, some key problems existing in the process of reverse reconstruction of massive and chaotic point cloud data are studied. Firstly, 3D laser scanner is used to obtain massive point cloud data, and the surface information of the measured object is stored in the form of point cloud data. Secondly, the point cloud data uncertainty analysis, region segmentation, data simplification and other preprocessing operations. Finally, the data inversion of the measured object is realized by surface reconstruction algorithm. The specific research contents are as follows: (1) the uncertainty representation of point cloud data focuses on the relationship between scanning equipment error, environment and other factors and the inaccurate measurement data in the actual measurement process. In order to quantify the inaccuracy of the original measurement data and make it participate in the calculation of point cloud data, this paper focuses on the representation model of point cloud uncertainty, and then studies how to quantify the uncertainty of the whole measurement space point cloud data by using Bayesian reasoning technology. (2) in the process of massive point cloud data segmentation, the point cloud data clustering segmentation algorithm is studied. The execution efficiency of clustering algorithm has become the bottleneck of system implementation. In the face of massive point cloud data, this paper studies the region segmentation technology of point cloud data based on K-means clustering algorithm. In order to effectively improve the execution efficiency of clustering algorithm and reduce the number of iterations of the algorithm, the concept of point cloud density is introduced in this paper. on the basis of K-means clustering, the estimation model of cluster density and the adjustment method of cluster center are studied. (3) in order to compress the amount of point cloud data and improve the speed of 3D surface modeling, the point cloud data reduction algorithm with reserved features is studied in this paper. Based on the local differential geometric characteristics of point cloud data, the matching relationship between point cloud data model and point cloud data is studied by using natural Quadric surface as point cloud data model. On the basis of the matching relationship between the point cloud data and the point cloud model, according to the surface characteristics of the point cloud model, this paper studies how to simplify the point cloud data with geometric features at different levels. (4) in order to accurately complete the point cloud surface reconstruction, this paper studies the Poisson surface reconstruction algorithm. The depth value of octree directly affects the execution efficiency of Poisson surface equation and the effect of surface reconstruction, so that the reconstruction effect of Poisson surface reconstruction at hole details is not ideal. In this paper, on the basis of point cloud clustering segmentation, the data characteristics of holes are analyzed, and how to make up for the poor reconstruction effect of Poisson reconstruction method in detail is studied by combining greedy triangulation method. Finally, the experimental platform is built by using cantilever car and three-dimensional laser scanner, and the implementation method of three-dimensional point cloud reverse reconstruction system suitable for material field data inversion is studied in this paper. Aiming at the acquired data set, the data acquisition and data preprocessing are verified, and then the inversion of stacking information is realized.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN249
【相似文獻】
相關(guān)期刊論文 前10條
1 喜文飛;史正濤;;一種新的點云數(shù)據(jù)組合精簡算法研究[J];科技通報;2014年03期
2 劉志軍;;基于三坐標(biāo)測量機的點云數(shù)據(jù)測量規(guī)劃研究[J];黑龍江科技信息;2008年20期
3 張會霞;;基于八叉樹的點云數(shù)據(jù)的組織與可視化[J];太原師范學(xué)院學(xué)報(自然科學(xué)版);2011年03期
4 方源敏;夏永華;陳杰;宋煒煒;楊永明;左小清;;基于改進的角度偏差法的采空區(qū)點云數(shù)據(jù)精簡[J];地球科學(xué)與環(huán)境學(xué)報;2012年02期
5 徐偉恒;馮仲科;蘇志芳;胥輝;焦有權(quán);鄧歐;;一種基于三維激光點云數(shù)據(jù)的單木樹冠投影面積和樹冠體積自動提取算法[J];光譜學(xué)與光譜分析;2014年02期
6 靳克強;龔志輝;湯志強;張斌;袁輝;;機載激光雷達(dá)點云數(shù)據(jù)質(zhì)量評價體系分析與探討[J];測繪與空間地理信息;2012年04期
7 劉亞文;龐世燕;左志奇;;蟻群算法的建筑立面點云數(shù)據(jù)提取[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2012年11期
8 喜文飛;方源敏;李帥;李健;;一種新的激光點云數(shù)據(jù)精簡方法[J];測繪工程;2012年04期
9 何麗;李嘉;鄭德華;;基于柵格的點云數(shù)據(jù)的邊界探測方法[J];測繪工程;2013年03期
10 劉尚蔚;朱小超;張永光;魏群;;多片點云數(shù)據(jù)拼接處理技術(shù)的研究[J];水利與建筑工程學(xué)報;2014年01期
相關(guān)會議論文 前10條
1 閆龍;;攝影測量點云數(shù)據(jù)精簡研究[A];第二十九屆中國控制會議論文集[C];2010年
2 吳美金;;基于薄壁構(gòu)件的點云數(shù)據(jù)提取[A];全國射線數(shù)字成像與CT新技術(shù)研討會論文集[C];2009年
3 段文國;張愛武;蔡廣杰;;基于VTK的點云數(shù)據(jù)繪制研究與實現(xiàn)[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
4 宋碧波;盧小平;盧遙;;基于點云數(shù)據(jù)的建筑物三維重建[A];第二屆“測繪科學(xué)前沿技術(shù)論壇”論文精選[C];2010年
5 張偉忠;張順海;于德敏;;點云數(shù)據(jù)與建模軟件的接口設(shè)計[A];全國第13屆計算機輔助設(shè)計與圖形學(xué)(CAD/CG)學(xué)術(shù)會議論文集[C];2004年
6 呂瓊瓊;楊曉暉;楊唐文;韓建達(dá);莊嚴(yán);;激光雷達(dá)點云數(shù)據(jù)的三維建模技術(shù)[A];2009年中國智能自動化會議論文集(第二分冊)[C];2009年
7 劉佳;張愛武;楊麗萍;;室內(nèi)場景激光點云數(shù)據(jù)的三維建模[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
8 隋立春;張熠斌;趙旦;;基于MicroStation的機載LiDAR點云數(shù)據(jù)分類處理軟件[A];第二屆“測繪科學(xué)前沿技術(shù)論壇”論文精選[C];2010年
9 黃承亮;吳侃;劉虎;;基于三維TIN的格網(wǎng)化點云數(shù)據(jù)特征提取[A];數(shù)字測繪與GIS技術(shù)應(yīng)用研討交流會論文集[C];2008年
10 楊銘;陳建峰;;基于CUDA的海量點云數(shù)據(jù)kNN查詢算法[A];第四屆“測繪科學(xué)前沿技術(shù)論壇”論文精選[C];2012年
相關(guān)博士學(xué)位論文 前10條
1 趙江洪;古建筑散亂點云基準(zhǔn)面的提取與擬合[D];武漢大學(xué);2012年
2 谷曉英;三維重建中點云數(shù)據(jù)處理關(guān)鍵技術(shù)研究[D];燕山大學(xué);2015年
3 胡峰俊;三維離散點云數(shù)據(jù)的預(yù)處理和配準(zhǔn)技術(shù)研究[D];浙江工業(yè)大學(xué);2015年
4 董秀軍;三維空間影像技術(shù)在地質(zhì)工程中的綜合應(yīng)用研究[D];成都理工大學(xué);2015年
5 李曉捷;基于深度相機的三維人體重建及在服裝展示方面的技術(shù)研究[D];天津工業(yè)大學(xué);2016年
6 張坤;基于三維激光掃描的點云數(shù)據(jù)逆向重建算法研究[D];燕山大學(xué);2016年
7 張學(xué)昌;基于點云數(shù)據(jù)的復(fù)雜型面數(shù)字化檢測關(guān)鍵技術(shù)研究及其系統(tǒng)開發(fā)[D];上海交通大學(xué);2006年
8 王果;不同平臺激光點云數(shù)據(jù)面狀信息自動提取研究[D];中國礦業(yè)大學(xué)(北京);2014年
9 趙煦;基于地面激光掃描點云數(shù)據(jù)的三維重建方法研究[D];武漢大學(xué);2010年
10 張會霞;三維激光掃描點云數(shù)據(jù)組織與可視化研究[D];中國礦業(yè)大學(xué)(北京);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張磊;大型鋼結(jié)構(gòu)建筑安裝質(zhì)量檢測與變形監(jiān)測軟件系統(tǒng)設(shè)計與實現(xiàn)[D];北京建筑大學(xué);2015年
2 饒杰;基于激光點云數(shù)據(jù)的建筑物快速三維建模[D];中國地質(zhì)大學(xué)(北京);2015年
3 李俊寶;TLS在古建筑物測繪及建模中的應(yīng)用研究[D];長安大學(xué);2015年
4 謝金坤;基于事故車輛車身變形的碰撞速度研究[D];長安大學(xué);2015年
5 顧品熒;基于點云數(shù)據(jù)的基本款女西裝樣板生成系統(tǒng)研究[D];蘇州大學(xué);2015年
6 李國瑞;車載LiDAR點云中的車輛自動檢測技術(shù)[D];長安大學(xué);2015年
7 江靜;建筑物L(fēng)iDAR點云數(shù)據(jù)特征檢測及配準(zhǔn)關(guān)鍵技術(shù)研究[D];集美大學(xué);2015年
8 梁子瑜;基于TLS點云數(shù)據(jù)的林分調(diào)查因子測定及收獲估計[D];南京林業(yè)大學(xué);2015年
9 喻W毶,
本文編號:2510752
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2510752.html