MM’X合金和全d-metal Heusler合金中的磁相變設計
[Abstract]:The ferromagnetic martensitic transformation, as one of the hot spots in the field of condensed matter physics and magnetic functional materials, can bring many physical effects, such as magnetic shape memory effect, magnetic induced strain output, magnetic entropy change, exchange bias, etc. In order to build a wide Curie temperature window with strong magnetic-structure coupling in the hexagonal MM 'X alloy and the development of a new Heusler ferromagnetic martensitic transformation material, the magnetic measurement, the X-ray diffraction, the transmission electron microscope, the scanning differential thermal analysis, the strain, The experimental methods, such as the transport and the calculation of the first principle, are studied in the following two aspects. The Mn _ (1-y) Fe _ yNiGe1-xSix system of Mn _ (1-y) Fe _ yNiGe system is selected by the principle of equal structure alloying, and the behavior characteristics of the new system Tt and the TC M can be simultaneously improved by means of the MnNiSi of the high-martensitic transformation temperature Tt and the high-martensitic Curie temperature TC M, the Curie temperature window width is not only extended to 400 K (from 40K to 450K), but also a martensite phase with strong ferromagnetic coupling and large saturation magnetization is obtained in the whole temperature range, So as to obtain a ferromagnetic martensitic transformation with a large saturation magnetization difference (m) throughout the window. In this paper, the large-magnetic entropy change and the low-field large-magnetic entropy change in a wide temperature range from 120K to 445K are given. Compared with other typical magnetic entropy-changing materials, the wide temperature range covered by the material system is not reported. In addition, the ferromagnetic martensitic transformation in the window shows good functional thermal stability and provides the basis for practical application. The series of Curie temperature windows obtained in the system provide a wide platform for the material application design, so that the material not only is in magnetic refrigeration, but also can be converted into a large-strain output, a multi-card effect, a gradient material and an energy source, Negative expansion and so on become an intelligent material with great application potential. On the basis of the in-depth understanding of the structural characteristics and the phase-forming rule of the Heusler alloy, it is pointed out that the p-d covalent bond between the main family element occupying the D-crystal position and the transition group element of the nearest neighbor A/ C position has a decisive effect on the phase and phase stability of the alloy, It is also possible to promote the formation of the Heusler phase and to stabilize the mother phase. Based on this, the new "all-d-metal Heusler alloy" of Ni50Mn50-yTy and Mn50Ni50-y Tiy, which does not contain the main group elements, is introduced in the NiMn alloy, and the increase of the Ti content can effectively reduce the martensitic transformation temperature Tt. The parent phase of the Ni50Mn50-yTy and Mn50Ni50-y Tiy is the ordered Heusler structure of B2 (L21). The results show that the mother phase of Ni50Mn50-yTiy is anti-ferromagnetic coupling. The magnetic evolution of the Ni50-x CoxMn25Ti25 mother phase is studied by the introduction of Co in the Ni site, and the ferromagnetic coupling of the mother phase can be effectively established by Co. And the exchange bias was observed in the ferromagnetic and anti-ferromagnetic competing critical components x = 17.5. A new type of d-metal Heusler ferromagnetic shape memory alloy was developed by using Co-activating effect in the mother phase of Ni50-xCoxMn35Ti15 and Mn50Ni40-x CoxTi10, and a new type of d-metal Heusler ferromagnetic shape memory alloy was developed. Combined with the first principle, the mechanism of Co is introduced to establish the ferromagnetic coupling of the mother phase, and the local ferromagnetic configuration of Mn (B)-Co (A/ C)-(MnD) can be formed. Based on the phase transition of the ferromagnetic martensite in the d-metal Heusler alloy, a series of magnetic properties are obtained, including the magnetic drive shape memory effect, the magnetic field induced large strain, the magnetic entropy change, the magnetic resistance, and the like. In particular, that Mn50Ni42.5 Co9. 5Ti10 show that the polycrystalline various same-sex magnetic field induce a large strain of up to 6950 ppm, which is entirely from the great volume change due to the martensitic transformation-2.54%, and the sample does not break or crack in the phase change process. The discovery of d-metal Heusler broke people's understanding that the Heusler alloy must contain the main group elements, and greatly expanded the phase space of the Heusler multi-function alloy, and it is the phase-forming mechanism and the martensitic transformation of the Heusler alloy. The magnetic coupling in the ferromagnetic shape memory alloy and the development and design of the new material provide important enlightenment.
【學位授予單位】:中國科學院大學(中國科學院物理研究所)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O469
【相似文獻】
相關期刊論文 前10條
1 王瑞軍;趙素英;張禮剛;胡金江;;馬氏體相變的取向關系及變體[J];河北師范大學學報(自然科學版);2009年04期
2 丁秀香 ,侯永平 ,翟甫禮 ,宋光政;銅錫合金熱彈馬氏體金相形貌研究[J];山西大學學報(自然科學版);1987年02期
3 蔣生蕊;低碳馬氏體相變的位錯理論[J];蘭州大學學報;1990年03期
4 徐祖耀;;馬氏體相變研究的一些進展[J];中國科學基金;1992年02期
5 鄧潔 ,龍起易 ,姜健 ,張修睦 ,龍期威;馬氏體相變的分形模型[J];科學通報;1996年06期
6 劉飛雪;;馬氏體相變研究進展[J];科技信息;2011年36期
7 王業(yè)寧,鄒一峰,張志方;馬氏體相變過程中低頻內(nèi)耗的研究[J];物理學報;1980年12期
8 李建明 ,謝源甫;馬氏體相變的前驅(qū)現(xiàn)象[J];湖南大學學報;1983年01期
9 林曉娉,谷南駒,張勇,孟昭偉,馬曉莉;{259}_f馬氏體表面浮凸的AFM定量分析及其相變切變角的測定[J];自然科學進展;2002年06期
10 孫雅萍;關于馬氏體相變特點的討論[J];成都大學學報(自然科學版);1996年02期
相關會議論文 前10條
1 韋廣梅;賈秀麗;史志銘;王川;;應力誘發(fā)下的多晶集合體宏細觀馬氏體相變模擬[A];中國力學學會學術大會'2009論文摘要集[C];2009年
2 馮偉;張燦輝;;馬氏體相變中相界面剪切應力計算[A];“力學2000”學術大會論文集[C];2000年
3 謝漢庭;;對《馬氏體相變與馬氏體》書內(nèi)圖2-87上兩個不同看法[A];第十五屆華東地區(qū)熱處理年會暨華東地區(qū)熱處理年會三十周年紀念活動論文摘要集[C];2006年
4 盧慧娟;李亮;姜世全;;變溫馬氏體相變瞬態(tài)溫度場的三維有限元分析[A];山東省金屬學會理化檢驗學術委員會理化檢驗學術交流會論文集[C];2009年
5 石瑋;郭正洪;戎詠華;陳世樸;徐祖耀;;原子力顯微鏡測定馬氏體相變切變角新方法[A];第十一次全國電子顯微學會議論文集[C];2000年
6 張驥華;鄧華銘;陳樹川;徐祖耀;;反鐵磁轉(zhuǎn)變與馬氏體相變耦合的阻尼機制[A];第四屆中國功能材料及其應用學術會議論文集[C];2001年
7 陳樹川;徐祖耀;張驥華;;Cu-Zn-Al合金烏氏體相變內(nèi)耗與馬氏體穩(wěn)定比[A];內(nèi)耗與超聲衰減——第二次全國固體內(nèi)耗與超聲衰減學術會議論文集[C];1988年
8 朱小明;黃紅波;林俊;李世民;夏元復;;核電站三回路海水中不銹鋼腐蝕的相變研究[A];Hyperfine Interaction and Nuclear Solid State Physics--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
9 龔明;;銅基形狀記憶合金顯微拉伸加卸載原位觀測[A];2010年海峽兩岸材料破壞/斷裂學術會議暨第十屆破壞科學研討會/第八屆全國MTS材料試驗學術會議論文集[C];2010年
10 李哲;徐坤;周效鋒;陽葉軍;敬超;張金倉;;Ni-Co-Mn-Sn哈斯勒合金磁場誘導馬氏體相變的熱力學效應研究[A];2011中國功能材料科技與產(chǎn)業(yè)高層論壇論文集(第三卷)[C];2011年
相關博士學位論文 前10條
1 楊哲一;Ti-V-Al基輕質(zhì)記憶合金的馬氏體相變與力學行為[D];哈爾濱工業(yè)大學;2016年
2 耿永紅;時效調(diào)控型Fe-Ni-Co-Al-Ta-B合金的熱彈性馬氏體相變研究[D];上海交通大學;2015年
3 魏志陽;MM’X合金和全d-metal Heusler合金中的磁相變設計[D];中國科學院大學(中國科學院物理研究所);2017年
4 閆紹盟;鐵磁性形狀記憶合金的馬氏體相變與晶體學[D];華中科技大學;2011年
5 崔玉亭;NiMnGa合金的熱力學效應和應用功能研究[D];重慶大學;2004年
6 宋固全;馬氏體相變材料的宏細觀本構模型研究[D];清華大學;1996年
7 李聰;鈦合金應力誘導馬氏體相變影響因素及力學性能研究[D];湖南大學;2013年
8 牛建鋼;氧對β-Ti_3Nb合金馬氏體相變的影響[D];北京科技大學;2014年
9 李哲;新型Ni-Mn基四元哈斯勒合金的相變熱力學效應和磁性能研究[D];上海大學;2011年
10 高麗;Ni-Mn-Ga-RE磁性記憶合金的微觀結(jié)構與馬氏體相變和力學性能[D];哈爾濱工業(yè)大學;2007年
相關碩士學位論文 前10條
1 陳海霞;Ti基非晶復合材料馬氏體相變的研究[D];大連交通大學;2015年
2 陳俊豪;熱變形條件對T92鋼馬氏體相變過程及性能的影響[D];天津理工大學;2015年
3 費小平;Cu摻雜NiMnIn合金結(jié)構相變與磁性能[D];南京理工大學;2015年
4 宋遠偉;細晶Ni-Mn-Ga合金的馬氏體相變和磁熱性能[D];哈爾濱工業(yè)大學;2015年
5 柴寶;CuAlNi合金馬氏體相變中的反問題[D];哈爾濱工業(yè)大學;2015年
6 覃事品;亞穩(wěn)態(tài)奧氏體不銹鋼中應變誘導馬氏體相變演化及其本構模型[D];北京理工大學;2015年
7 徐奕辰;Ni-Fe-Ga-Co磁性形狀記憶合金馬氏體相變及微觀結(jié)構研究[D];東北大學;2013年
8 李春光;Ni-Mn基Heusler鐵磁形狀記憶合金磁性質(zhì)及馬氏體相變理論研究[D];哈爾濱理工大學;2013年
9 董妍;Cu摻雜Ni_(49)Fe_(18)Ga_(27)Co_6和Ni_(51.5)Mn_(26.5)Ga_(22)磁性形狀記憶合金的馬氏體相變及微觀結(jié)構研究[D];東北大學;2014年
10 李艷波;Ni-Fe-Ga-(Co)鐵磁形狀記憶合金的晶體結(jié)構、馬氏體相變和磁性能的研究[D];東北大學;2014年
,本文編號:2496447
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2496447.html