天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

新型人工材料中量子系統(tǒng)的動(dòng)力學(xué)演化及非經(jīng)典性質(zhì)

發(fā)布時(shí)間:2019-05-28 18:37
【摘要】:處于真空中的激發(fā)原子,由于受到均勻漲落電磁模式的影響,將自發(fā)的輻射出光子,從激發(fā)態(tài)躍遷至基態(tài)。在認(rèn)識(shí)到材料能夠修飾原子的自發(fā)輻射過(guò)程之后,人們開(kāi)始探索各種新型材料對(duì)真空環(huán)境的影響。隨著實(shí)驗(yàn)生產(chǎn)技術(shù)的發(fā)展,特異材料(metamaterials)、拓?fù)浣^緣體(topological insulators)和石墨烯(graphene)等新型人工材料在2004年前后得以制備。其中,特異材料是基于自然材料的認(rèn)知框架上加以設(shè)計(jì)和制備的,具有負(fù)折射率及電磁透明等獨(dú)特的光學(xué)性質(zhì)。在拓?fù)浣^緣體中,當(dāng)無(wú)能隙表面態(tài)的時(shí)間反演對(duì)稱性遭到破壞時(shí),其光學(xué)性質(zhì)將受到拓?fù)淞康男揎椂憩F(xiàn)出類似法拉第旋光效應(yīng)等特殊的電磁現(xiàn)象。而在石墨烯薄層中,通過(guò)調(diào)節(jié)門電壓或化學(xué)摻雜的濃度及類型,能夠調(diào)控其在不同頻段的光學(xué)性質(zhì)。在太赫茲頻段,石墨烯將表現(xiàn)出類金屬的性質(zhì),并支持表面等離子體模式的傳播。結(jié)合上述新型材料的特性,在本文中我們研究了不同材料中原子自發(fā)輻射的性質(zhì),并根據(jù)材料不同的光學(xué)性質(zhì)實(shí)現(xiàn)原子間的糾纏,量子干涉及共振熒光譜壓縮等-系列非經(jīng)典現(xiàn)象。首先,我們研究了兩個(gè)二能級(jí)體系在零折射材料中的糾纏特性。其中,零折射材料由兩種不同類型,厚度相同的單負(fù)材料板組成。為了能夠激發(fā)兩平板材料交界處的表面場(chǎng)并與之產(chǎn)生較強(qiáng)的耦合,我們將原子對(duì)置于交界面附近。假設(shè)系統(tǒng)處于單激發(fā)態(tài),根據(jù)薛定諤方程,在不做馬爾科夫近似的情況下我們得到了系統(tǒng)的幾率幅演化方程。當(dāng)材料厚度遠(yuǎn)大于表面場(chǎng)的特征長(zhǎng)度時(shí),格林函數(shù)能夠得到簡(jiǎn)化并具有解析表達(dá)式。通過(guò)求解系統(tǒng)的運(yùn)動(dòng)方程可以得知,存在一個(gè)臨界值,當(dāng)對(duì)稱模式、反對(duì)稱模式與表面場(chǎng)的相互作用強(qiáng)度處于其兩端時(shí),系統(tǒng)將表現(xiàn)出不同的動(dòng)力學(xué)性質(zhì)。具體來(lái)說(shuō),對(duì)應(yīng)于不同情況,系統(tǒng)的演化將分別表現(xiàn)出馬爾科夫行為及強(qiáng)相互作用下的非馬爾科夫行為。而體系的糾纏受到初態(tài)的影響,將表現(xiàn)出從糾纏態(tài)逐漸衰減直至消失或隨時(shí)間逐漸增大,并長(zhǎng)時(shí)間保持等特性。此外,當(dāng)原子的躍遷頻率與表面場(chǎng)的共振頻率發(fā)生失諧時(shí),若原子問(wèn)的相互關(guān)聯(lián)較強(qiáng),依然能夠產(chǎn)生糾纏。其次,我們研究了由拓?fù)浣^緣體組成的光學(xué)微腔中,三能級(jí)Zeeman原子的量子干涉效應(yīng)。由于拓?fù)潆姶判?yīng)的存在,當(dāng)微腔的長(zhǎng)度小于半個(gè)真空波長(zhǎng)時(shí),原子平行于腔鏡的偶極躍遷將受到抑制,而垂直方向的偶極躍遷則得到加強(qiáng)。而當(dāng)拓?fù)潆姶判?yīng)極強(qiáng)時(shí),平行于腔鏡的偶極輻射將完全消失,此時(shí)處于腔中的原子能夠產(chǎn)生極強(qiáng)的量子干涉效應(yīng)。若微腔的長(zhǎng)度增大,由于腔內(nèi)電磁場(chǎng)的不均勻分布,將使得此時(shí)量子干涉的強(qiáng)度取決于原子在腔中所處的位置,呈現(xiàn)出相干電磁波疊加后的波動(dòng)特性。實(shí)際情況下,材料將存在一定的能量損耗。結(jié)果表明,該損耗僅在腔鏡附近一段很小的區(qū)域內(nèi)對(duì)原子的自發(fā)輻射有著較大的影響。因而當(dāng)原子處于該區(qū)域時(shí),由于其它電磁模式對(duì)自發(fā)輻射的貢獻(xiàn)小于耗散對(duì)原子的影響,量子干涉效應(yīng)將受到破壞而大幅度下降。在原子遠(yuǎn)離腔鏡后,損耗對(duì)量子干涉的影響將逐漸消失,對(duì)應(yīng)的情況與無(wú)損耗時(shí)基本一致。最后,我們討論了處于石墨烯表面附近的二能級(jí)量子點(diǎn)的輻射性質(zhì)。在太赫茲頻段,量子點(diǎn)的Purcell系數(shù)隨頻率變化而表現(xiàn)出近似洛倫茲型的分布。并且,隨著環(huán)境溫度的增加,該分布將趨于平均,同時(shí)Purcell系數(shù)較零溫時(shí)有所下降。將量子點(diǎn)置于表面等離子體場(chǎng)的工作區(qū)域內(nèi),通過(guò)調(diào)節(jié)泵浦激光場(chǎng)的強(qiáng)度和中心頻率,當(dāng)修飾量子點(diǎn)對(duì)應(yīng)的兩條躍遷通道以不同的速率進(jìn)行衰變時(shí),共振熒光譜中將出現(xiàn)壓縮現(xiàn)象。適當(dāng)?shù)臏p小量子點(diǎn)到石墨烯的距離,使得量子點(diǎn)與表面場(chǎng)的耦合強(qiáng)度增大,可以克服量子點(diǎn)退相干作用對(duì)壓縮的破壞。當(dāng)修飾量子點(diǎn)的布居差極大時(shí),合理地選取實(shí)驗(yàn)參數(shù),室溫下的壓縮強(qiáng)度將有可能大于零溫時(shí)的情況。此外,即便是在室溫下,通過(guò)調(diào)節(jié)石墨烯的費(fèi)米能及泵浦光場(chǎng)的強(qiáng)度及中心頻率,量子點(diǎn)熒光譜中的壓縮現(xiàn)象將能夠得到極大增強(qiáng)。
[Abstract]:The excitation atoms in the vacuum, due to the influence of the uniform fluctuation electromagnetic mode, will spontaneously radiate the photons and transition from the excited state to the ground state. After recognizing the self-emitting process of the material capable of modifying the atoms, the effect of a variety of new materials on the vacuum environment has been initiated. With the development of experimental production technology, new types of artificial materials, such as metal materials, topological insulators, and graphenene, were prepared before and after 2004. In which the specific material is designed and prepared on a cognitive framework based on natural materials, and has unique optical properties such as negative refractive index and electromagnetic transparency. In the topological insulator, when the time inversion symmetry of the inept surface state is destroyed, the optical property of the topological insulator is affected by the modification of the topological quantity, and special electromagnetic phenomena such as the Faraday rotation effect can be displayed. In the graphene thin layer, the optical properties in different frequency bands can be controlled by adjusting the concentration and the type of the gate voltage or the chemical doping. In the terahertz frequency band, the graphene will exhibit the nature of the metalloid and support the propagation of the surface plasma mode. In this paper, the properties of atom self-emission in different materials are studied in this paper, and the entanglement, quantum interference and resonance fluorescence spectrum compression of atoms in different materials are studied in this paper. First, we have studied the entanglement of two two-level system in the zero-refractive material. Wherein the zero-refraction material consists of two different types of single-negative material plates with the same thickness. In order to be able to excite the surface field at the junction of the two plate materials and to generate a strong coupling, we place the atomic pairs near the interface. It is assumed that the system is in a single excited state. According to the Schrodinger equation, the probability amplitude evolution equation of the system is obtained without the Markov approximation. When the thickness of the material is much larger than the characteristic length of the surface field, the green function can be simplified and has an analytical expression. By solving the motion equation of the system, it is known that there is a critical value, and when the interaction intensity of the symmetric mode, the antisymmetric mode and the surface field is at both ends, the system will exhibit different dynamic properties. In particular, the evolution of the system will show the Markov behavior and the non-Markov behavior under strong interaction, respectively. The entanglement of the system is affected by the initial state, which will show the gradual attenuation from the entangled state until it disappears or gradually increases with time, and keeps the characteristics for a long time. In addition, when the transition frequency of the atom and the resonance frequency of the surface field are detuned, entanglement can still be generated if the inter-correlation of the atoms is strong. Secondly, we study the quantum interference effect of three-level Zeeman atom in the optical microcavity composed of topological insulator. Due to the existence of the topological electromagnetic effect, when the length of the micro-cavity is less than half a vacuum wavelength, the dipole transition of the atoms parallel to the cavity mirror is suppressed, and the dipole transition in the vertical direction is strengthened. And when the topological electromagnetic effect is very strong, the dipole radiation parallel to the cavity mirror disappears completely, and the atoms in the cavity can generate extremely strong quantum interference effect. If the length of the micro-cavity is increased, due to the non-uniform distribution of the electromagnetic field in the cavity, the intensity of the quantum interference at this time is dependent on the position of the atom in the cavity, and the wave characteristic after the superposition of the coherent electromagnetic wave is presented. In practice, a certain amount of energy loss will be present in the material. The results show that this loss has a great effect on the spontaneous emission of atoms in a small area near the cavity mirror. Thus, when the atom is in the region, the contribution of other electromagnetic modes to the spontaneous emission is less than the effect of the dissipation on the atoms, and the quantum interference effect will be destroyed and greatly reduced. After the atom is far from the cavity mirror, the effect of loss on the quantum interference will gradually disappear, and the corresponding condition is basically the same as that of no loss. Finally, we discuss the radiation properties of two-level quantum dots near the surface of the graphene. In the terahertz frequency band, the Purcell coefficient of the quantum dot shows an approximate lorentz-type distribution along with the frequency change. And, with the increase of the ambient temperature, the distribution will tend to average while the Purcell coefficient decreases at zero temperature. The quantum dots are placed in the working area of the surface plasma field, and by adjusting the intensity and the center frequency of the pumping laser field, when the two transition channels corresponding to the modified quantum dots decay at different rates, the resonance fluorescence spectrum will exhibit a compression phenomenon. And the distance between the quantum point and the graphene is appropriately reduced, so that the coupling strength of the quantum dot and the surface field is increased, and the damage to the compression can be overcome by overcoming the quantum dot rejection coherence effect. When the distribution of the modified quantum dots is great, the experimental parameters can be reasonably selected, and the compression strength at room temperature will be more than zero temperature. In addition, even at room temperature, by adjusting the Fermi energy of the graphene and the intensity and the center frequency of the pump light field, the compression phenomenon in the quantum dot fluorescence spectrum can be greatly enhanced.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O413

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王治國(guó);高童童;譚為;;微帶線系統(tǒng)中基于相位耦合機(jī)制的類量子干涉行為[J];南昌航空大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期

2 孫萌濤,田紅梅,沙國(guó)河;轉(zhuǎn)動(dòng)傳能中的量子干涉:干涉角和相對(duì)速度的關(guān)系(英文)[J];化學(xué)物理學(xué)報(bào);2002年03期

3 孫真榮,王祖賡;分子及分子-原子混合系統(tǒng)中的量子干涉效應(yīng)[J];量子電子學(xué)報(bào);2004年02期

4 關(guān)洪;量子干涉效應(yīng)[J];物理;1983年04期

5 吳錦捫,趙泓;意識(shí)與量子干涉——一個(gè)實(shí)驗(yàn)性的探討[J];自然雜志;1983年02期

6 高韶燕,李福利;量子干涉效應(yīng)對(duì)原子共振熒光非經(jīng)典特性的影響[J];原子核物理評(píng)論;2002年02期

7 王立,張小安,牛超英;四能級(jí)混合共振系統(tǒng)量子干涉現(xiàn)象理論分析[J];雁北師范學(xué)院學(xué)報(bào);2003年02期

8 楊希華,孫真榮,丁良恩,王祖賡;基于碰撞產(chǎn)生的頻域和時(shí)域內(nèi)的量子干涉效應(yīng)研究[J];量子光學(xué)學(xué)報(bào);2004年S1期

9 李永慶,陳躍輝,李春霞,馬鳳才;轉(zhuǎn)動(dòng)傳能中的量子干涉——干涉角和轉(zhuǎn)動(dòng)量子數(shù)的關(guān)系[J];原子與分子物理學(xué)報(bào);2005年04期

10 韓紅培;王國(guó)志;;低頻調(diào)制場(chǎng)中鉀原子的量子干涉效應(yīng)[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期

相關(guān)會(huì)議論文 前10條

1 楊希華;孫真榮;丁良恩;王祖賡;;基于碰撞產(chǎn)生的頻域和時(shí)域內(nèi)的量子干涉效應(yīng)研究[A];第十一屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2004年

2 羊亞平;許靜平;陳鴻;朱詩(shī)堯;;左手性材料對(duì)量子干涉的影響[A];第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要集[C];2008年

3 李永放;鈕月萍;;量子干涉效應(yīng)與四波混頻相互作用的研究[A];第六屆全國(guó)光學(xué)前沿問(wèn)題研討會(huì)論文摘要集[C];2003年

4 鄭仕標(biāo);;一種制備囚禁離子運(yùn)動(dòng)的宏觀量子干涉態(tài)的方法[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(上冊(cè))[C];1999年

5 周魯;譚榮;李高翔;;兩平行板間的三能級(jí)原子衰變通道之間的量子干涉[A];大珩先生九十華誕文集暨中國(guó)光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年

6 曾小東;許靜平;羊亞平;;磁單負(fù)材料板附近原子量子干涉的加強(qiáng)[A];第十五屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2012年

7 楊希華;孫真榮;曾和平;丁良恩;王祖賡;;原子—分子體系中多能級(jí)系統(tǒng)的量子干涉效應(yīng)[A];第九屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)摘要集(Ⅱ)[C];2000年

8 吳美娟;吳令安;;參量下轉(zhuǎn)換光子與次生和頻光子之間的四階量子干涉實(shí)驗(yàn)方案[A];第七屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要集[C];1996年

9 苗剛;馬鳳才;;原子-雙原子分子體系碰撞誘導(dǎo)中的量子干涉效應(yīng)[A];第十五屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文摘要集[C];2009年

10 許靜平;王立剛;羊亞平;林強(qiáng);朱詩(shī)堯;;利用一維光子晶體使V型Zeeman原子發(fā)生完全量子干涉[A];第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要集[C];2008年

相關(guān)重要報(bào)紙文章 前1條

1 本報(bào)記者 張夢(mèng)然;“量子力學(xué)在哪?你正沉浸其中”[N];科技日?qǐng)?bào);2012年

相關(guān)博士學(xué)位論文 前8條

1 方煒;新型人工材料中量子系統(tǒng)的動(dòng)力學(xué)演化及非經(jīng)典性質(zhì)[D];華中師范大學(xué);2016年

2 孫萌濤;碰撞誘導(dǎo)轉(zhuǎn)動(dòng)傳能中的量子干涉效應(yīng)理論研究[D];中國(guó)科學(xué)院研究生院(大連化學(xué)物理研究所);2003年

3 鄭軍;電磁感應(yīng)介質(zhì)的量子干涉效應(yīng)研究[D];南昌大學(xué);2009年

4 馬瑞瓊;量子干涉效應(yīng)與量子態(tài)測(cè)量的理論研究[D];陜西師范大學(xué);2009年

5 鄧樂(lè);分子多能級(jí)系統(tǒng)量子干涉效應(yīng)研究[D];華東師范大學(xué);2000年

6 張衍亮;原子、分子和離子多能級(jí)系統(tǒng)中的量子干涉及光輻射研究[D];華東師范大學(xué);2002年

7 趙順才;基于量子干涉效應(yīng)的低吸收負(fù)折射率介質(zhì)及相關(guān)研究[D];南昌大學(xué);2011年

8 劉杰;乙烯酮的光解動(dòng)力學(xué)研究和CO-HCI碰撞傳能中的量子干涉效應(yīng)實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(大連化學(xué)物理研究所);2005年

相關(guān)碩士學(xué)位論文 前10條

1 張雙穎;基于量子干涉的二維負(fù)折射效應(yīng)研究[D];昆明理工大學(xué);2015年

2 張小安;四能級(jí)系統(tǒng)中的量子干涉[D];陜西師范大學(xué);2000年

3 曾福華;多能級(jí)系統(tǒng)中基于量子干涉效應(yīng)下的量子調(diào)控[D];南昌大學(xué);2007年

4 陳峻;多能級(jí)系統(tǒng)中的量子干涉效應(yīng)[D];南昌大學(xué);2007年

5 張振清;多能級(jí)原子系統(tǒng)中量子干涉效應(yīng)的研究[D];南昌大學(xué);2011年

6 曹謹(jǐn)豐;中間態(tài)引入量子干涉的多光子共振多波混頻[D];河北大學(xué);2009年

7 趙艷輝;光場(chǎng)中原子的宏觀量子干涉[D];東北師范大學(xué);2009年

8 賈久峰;四能級(jí)系統(tǒng)中量子干涉效應(yīng)的研究[D];大連理工大學(xué);2010年

9 蔡立鋒;量子干涉在光與原子相互作用中的理論及應(yīng)用[D];國(guó)防科學(xué)技術(shù)大學(xué);2005年

10 方慧娟;多能級(jí)原子系統(tǒng)中的量子調(diào)控[D];南昌大學(xué);2008年

,

本文編號(hào):2487273

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2487273.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f3ad0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com