天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

銅銦硫基半導體量子點光電特性及其應用的研究

發(fā)布時間:2019-03-08 08:14
【摘要】:在半導體量子點中,因為有量子限域效應的存在,使得其具有獨特的光學性質(zhì)。因此,其在生物、光電及光伏等領(lǐng)域具有重要的應用前景。本文基于綠色化學的理念,從材料的合成、光學機理及應用等方面,對無毒的銅銦硫基量子點展開實驗研究,取得了以下創(chuàng)新研究成果: 1.量子點光學機理方面的研究。我們合成了CuInS2量子點、CuInS2/ZnS核/殼量子點以及ZnCuInS/ZnSe/ZnS核/殼/殼量子點。在對其性能的表征過程中,發(fā)現(xiàn)了此類量子點具有的一些特性,包括吸收光譜和發(fā)光光譜均較寬,存在著較大的Stokes位移等,這是由其能帶結(jié)構(gòu)及發(fā)光機理決定的。較大的Stokes位移(400-500meV)證明,在此類量子點中主要的復合過程是與缺陷能級有關(guān)的復合。而較為明顯的尺寸依賴效應同時證明了,施主-受主對(donor-acceptorpair,縮寫DAP)復合是該類量子點的多種主要的復合過程之一,而并不是占主導的復合過程。分別測試了ZnCuInS/ZnSe/ZnS核/殼/殼量子點、Cu與In比例不同的CuInS2量子點及CuInS2/ZnS核/殼量子點的溫度依賴的光致發(fā)光光譜和時間分辨光致發(fā)光光譜。通過對多種光譜的分析,我們深入地研究了此類量子點的復合機理。并提出了,在此類量子點中,同時存在著多種復合過程,包括與表面態(tài)有關(guān)的復合、導帶與缺陷能級間的復合以及DAP復合。然后,我們改變CuInS2量子點及CuInS2/ZnS核/殼量子點中Cu與In的比例,分析其溫度依賴的光致發(fā)光光譜發(fā)現(xiàn),當In組分含量增大時,在與表面態(tài)有關(guān)的復合、導帶與缺陷能級間的復合以及DAP復合中,,DAP復合所占的比重有所增加。 3.基于ZnCuInS/ZnSe/ZnS核/殼/殼量子點發(fā)光的溫度特性的研究,我們將其應用于微區(qū)、面陣的溫度傳感中。測得該量子點光致發(fā)光強度隨溫度變化的系數(shù)(溫度系數(shù))達到0.66%/oC。使用光纖光譜儀與高倍顯微鏡組成了測試系統(tǒng),通過測試微米區(qū)域的量子點的光致發(fā)光光譜來完成微區(qū)、面陣的溫度檢測。該系統(tǒng)測試的誤差低于2%。 4.量子點發(fā)光二極管(QD-LED)的制備及溫度效應的研究。將三個尺寸的ZnCuInS/ZnSe/ZnS核/殼/殼量子點分別與GaN發(fā)光二極管組裝,制成了紅光、黃光和綠光的QD-LED。在2.6V的工作電壓下,相應的三種顏色的QD-LED的功率效率依次為14.0lm/W、47.1lm/W和62.4lm/W。通過對不同工作電壓下QD-LED的色坐標,光譜峰位,半峰寬及功率效率的分析,我們研究了QD-LED的溫度效應。結(jié)果表明,就器件的功率效率隨著電壓升高的下降而言,發(fā)光二極管表面溫度的升高引起的熱猝滅是一個不可忽視的因素。同時ZnCuInS/ZnSe/ZnS核/殼/殼量子點的發(fā)射峰位的溫度系數(shù)很低(紅光,黃光及綠光量子點的溫度系數(shù)分別為0.022nm/oC、0.050nm/oC和0.068nm/oC),這使得QD-LED的色坐標在不同工作電壓下,變化非常小,證明了該QD-LED的顏色穩(wěn)定性好。與CdSe量子點的相應數(shù)據(jù)相比,ZnCuInS/ZnSe/ZnS核/殼/殼量子點在顏色穩(wěn)定性方面,更適合做下轉(zhuǎn)換材料。
[Abstract]:In semiconductor quantum dots, due to the existence of quantum confinement effect, it has unique optical properties. Therefore, it has an important application prospect in biological, photoelectric and photovoltaic fields. In this paper, based on the concept of green chemistry, the nontoxic copper-indium-sulfur-based quantum dots have been experimentally studied from the aspects of material synthesis, optical mechanism and application, and the following innovative achievements have been obtained: 1. The optical mechanism of quantum dots has been studied. We have synthesized CuInS2 quantum dots, CuInS2/ZnS core / shell quantum dots and ZnCuInS/ZnSe/ZnS core / shell quantum dots. During the characterization of the quantum dots, some properties of these quantum dots were found, including the wide absorption and luminescence spectra, and the existence of a large Stokes shift, which is determined by the energy band structure and the luminescence mechanism. The large Stokes shift (400-500meV) proves that the main recombination process in this kind of quantum dots is the recombination related to the defect energy level. The obvious size-dependent effect also proves that the donor-acceptor pair (donor-acceptorpair,-acceptor pair) recombination is one of the main recombination processes of this kind of quantum dots, but not the dominant one. The temperature-dependent photoluminescence spectra and time-resolved photoluminescence spectra of ZnCuInS/ZnSe/ZnS core / shell quantum dots, CuInS2 quantum dots with different ratio of Cu to In and CuInS2/ZnS core / shell quantum dots were measured. Through the analysis of many kinds of spectra, we have studied the recombination mechanism of this kind of quantum dots in depth. It is also proposed that there are many kinds of recombination processes in the quantum dots, including the recombination related to the surface states, the recombination between the conduction band and the defect level, and the DAP recombination. Then, we change the ratio of Cu to In in CuInS2 QDs and CuInS2/ZnS core / shell QDs and analyze their temperature dependent photoluminescence spectra. The recombination between conduction band and defect level and the proportion of DAP recombination in DAP recombination increased. 3. Based on the study of temperature characteristics of ZnCuInS/ZnSe/ZnS core / shell quantum dots, we apply them to temperature sensing of micro-region and area array. The coefficient (temperature coefficient) of photoluminescence intensity of the quantum dot with temperature is 0.66%, and the temperature coefficient of photoluminescence of the quantum dot is 0.66%. An optical fiber spectrometer and a high power microscope are used to measure the temperature of the micro-region and the area array by measuring the photoluminescence spectra of the quantum dots in the micron region. The test error of the system is less than 2%. 4. Preparation of quantum dot light emitting diode (QD-LED) and study of temperature effect. Three sizes of ZnCuInS/ZnSe/ZnS core / shell quantum dots were assembled with GaN light emitting diodes to produce QD-LED. with red, yellow and green light. Under the operating voltage of 2.6 V, the power efficiency of the corresponding three colors of QD-LED is 14.0 lm / W, 47.1lm / W and 62.4lm / w, respectively. By analyzing the color coordinates, spectral peak position, half-peak width and power efficiency of QD-LED at different operating voltages, we have studied the temperature effect of QD-LED. The results show that the thermal quenching caused by the rising surface temperature of light emitting diodes is an important factor for the decrease of the power efficiency of the devices with the increase of the voltage. At the same time, the temperature coefficients of the emission peaks of ZnCuInS/ZnSe/ZnS core / shell QDs are very low (the temperature coefficients of red, yellow and green QDs are 0.022 nm C, 0.050 nm C and 0.068nm/oC, respectively). This makes the color coordinates of QD-LED change little under different working voltages, which proves that the color stability of the QD-LED is good. Compared with the corresponding data of CdSe QDs, ZnCuInS/ZnSe/ZnS core / shell QDs are more suitable for down-conversion materials in terms of color stability.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:O471.1

【共引文獻】

相關(guān)期刊論文 前10條

1 王遠強;李耀剛;王宏志;張青紅;包一鳴;姬宇;;CuInS_2量子點的制備及其敏化太陽能電池研究進展[J];材料導報;2013年07期

2 杜凱;張金花;王峰;鄒繼偉;許圣杰;吳悠;余大斌;;Ⅱ-Ⅵ族量子點的制備和非線性光學性質(zhì)研究進展[J];材料導報;2013年17期

3 Geeta Rani;P.D.Sahare;;Structural and Spectroscopic Characterizations of ZnO Quantum Dots Annealed at Different Temperatures[J];Journal of Materials Science & Technology;2013年11期

4 張躍宗;李春霞;王瑞春;莊四祥;胡宏生;;直下式LED背光TV色域的研究[J];光電子技術(shù);2014年01期

5 謝翠萍;向衛(wèi)東;駱樂;鐘家松;趙斌宇;梁曉娟;;AgInS_2量子點研究進展[J];功能材料;2014年04期

6 陳峗漢;張雪;周潔;曹進;張建華;殷錄喬;朱文清;;紅、綠CdSe@ZnS量子點配比對三波段標準白光LED器件的影響[J];發(fā)光學報;2014年08期

7 張馮章;李湘奇;鄔小鳳;范希梅;張朝良;;Influence of deposition temperature on CdS thin films by polyol method[J];Journal of Semiconductors;2014年08期

8 陳肖慧;袁曦;華杰;趙家龍;李海波;;殼層相關(guān)的CdSe核/殼量子點發(fā)光的熱穩(wěn)定性[J];發(fā)光學報;2014年09期

9 姜青松;朱月華;王海波;施豐華;卓寧澤;李東志;湯坤;;水相合成CdTe量子點及其性能表征[J];功能材料;2014年16期

10 覃愛苗;蔣麗;蔣坤朋;廖雷;;基于水相法制備CdTe量子點及其功能化組裝研究進展[J];材料導報;2014年15期

相關(guān)碩士學位論文 前10條

1 勒孚河;銪激活的堿土金屬磷酸鹽基質(zhì)發(fā)光材料的制備及其發(fā)光性能研究[D];新疆大學;2011年

2 何莎莎;ZnO薄膜的低溫溶液法制備及在光電器件中應用[D];浙江大學;2013年

3 彭鵬;Sr_3AlO_4F:Ce~(3+)熒光粉及其固溶體的制備和發(fā)光性能研究[D];北京有色金屬研究總院;2013年

4 丁倩倩;鎳基貴金屬納米材料用于表面增強拉曼光譜基底研究[D];安徽大學;2013年

5 齊曉妍;Gd~(3+)/Yb~(3+)摻雜ZnO量子點雙模式MRI/CT成像探針[D];長春工業(yè)大學;2013年

6 黃云波;納米顆粒一維光子晶體的制備及其在控制發(fā)光方面的應用[D];上海師范大學;2013年

7 趙婕;聚合物太陽能電池中電子緩沖層的優(yōu)化[D];南昌大學;2013年

8 高冬梅;超聲催化1,2-二苯乙醇類化合物的合成及抑菌活性的評價[D];西北農(nóng)林科技大學;2013年

9 周婷;鋰離子電池負極材料Li_4Ti_5O_(12)的改性及電化學性能研究[D];福建師范大學;2013年

10 林算治;摻鋁氧化鋅透明導電薄膜上無催化劑生長ZnO納米棒陣列及其光學特性研究[D];福建師范大學;2013年



本文編號:2436610

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2436610.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶36daf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com