一類流體力學方程組的初值問題的爆破與非存在性
[Abstract]:In this paper, we study the blow-up of the classical solution of the initial value problem of the Euler-Poisson equations with electric field and the nonexistence of the initial value problem of the compressible Navier-Stokes equations in the Sobolev space, which contains two parts. In the first part, we consider the initial value problem of complete Euler-Poisson equations with electric field and Euler-Poisson equations with equal entropy. We prove that the classical solution of the initial value problem will burst in finite time if the initial value satisfies certain conditions. Because the Euler-Poisson equations are derived from the coupling of the Euler equations with the gravity field or electric field, the gravity field or electric field is a nonlocal term, which destroys the finite propagation of the compact support set of the density. This makes Sideris [39] prove that the method of blow-up of Euler equations is invalid when dealing with the blow-up of Euler-Poisson equations. Sideris's method contains two key elements, one is the finite propagation of compact support set of density, The other is the estimation of the radial component of momentum. The estimation of radial component of momentum can be replaced by the upper bound estimation of internal energy. Therefore, we need to find a new element to replace the finite propagation of compact set of density. For this problem, we need to overcome two difficulties, one is to estimate the nonlocal term derived from the electric field, and the other is how to prove the explosion when the density does not have a compact support set. The two difficulties are combined. Our approach is to use the Hardy-Littlewood-Sobolev inequality to deal with the nonlocal term derived from the electric field and then to estimate the upper bound of the internal energy, and to use the Chemin inequality to give the lower bound estimate of the internal energy. Finally, by comparing the coefficients of the upper and lower bounds of the internal energy, it is determined that the smooth solution of the initial value problem of the Euler-Poisson equations with electric field will burst in a finite time under certain conditions. In the second part, the nonexistence of the initial value problem for the complete Navier-Stokes equations with compressible arbitrary dimension and the one-dimensional isentropic Navier-Stokes equations in Sobolev space is studied. Xin Zhouping [45], Cho and Jin [61] prove that if the initial density has compact support, The solution of the initial value problem for the complete Navier-Stokes equations with compressible arbitrary dimension and the one-dimensional isentropic Navier-Stokes equations will burst in a certain Sobolev space. Our work proves that under the condition that the initial density has compact support set, The complete Navier-Stokes equations with compressible arbitrary dimension with heat exchange have no solution in this kind of Sobolev space and the one-dimensional isentropic Navier-Stokes equations have no solution in this kind of Sobolev space under the condition that the initial value satisfies certain conditions. Our approach is to first turn the initial value problem into an initial-boundary value problem for an overdetermined system of integro-differential equations on a bounded domain. Then a proper parabolic or integro-differential operator degenerate along the time derivative is defined and the corresponding Hopf Lemma and strong extremum principle are established.
【學位授予單位】:清華大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O175.8
【相似文獻】
相關期刊論文 前10條
1 沈彩霞;一類廣義Davey-Stewartson方程關于初值問題的解[J];河北大學學報(自然科學版);2002年01期
2 郭柏靈;一類高階多維非線性Schr銉dinger方程組的初值問題和周期初值問題[J];科學通報;1982年06期
3 鄭興禮;一類退化方程的初值問題[J];科學通報;1982年24期
4 唐璐茜;一類非齊次退化方程的初值問題[J];華東交通大學學報;1991年01期
5 連璉,郭春輝;三維空間水下纜索性狀計算初值問題的解[J];海洋工程;1992年02期
6 除才生;擬線性拋物型方程組初值問題的整體解[J];河海大學學報;1994年04期
7 羅黨;具強迫項P系統(tǒng)的初值問題[J];天中學刊(駐馬店師專學報);1997年05期
8 湯永龍;大腦中藥物擴散模型的初值問題及參數(shù)估計[J];益陽師專學報;2001年03期
9 王艷萍;;一類非線性雙曲型方程的初值問題[J];工程數(shù)學學報;2009年01期
10 劉鐵鎖;;一階線性微分方程初值問題解公式應用及例題分析[J];科學技術與工程;2011年17期
相關會議論文 前4條
1 張素英;;動力學微分方程初值問題的一個新解法[A];中國力學學會學術大會'2009論文摘要集[C];2009年
2 王磊;郭嗣琮;;一階線性模糊微分方程組的模糊初值問題[A];中國運籌學會模糊信息與模糊工程分會第五屆學術年會論文集[C];2010年
3 張娜;;基于三次Lagrange插值多項式的分數(shù)階常微分方程初值問題的預校算法[A];中國力學大會——2013論文摘要集[C];2013年
4 王曉東;曹慶杰;陳予恕;;干摩擦作用下雙邊約束SD振子的初值問題[A];第十三屆全國非線性振動暨第十屆全國非線性動力學和運動穩(wěn)定性學術會議摘要集[C];2011年
相關博士學位論文 前6條
1 陳停停;等熵Euler方程組Chaplygin氣體模型初值問題弱解存在性的研究[D];中國科學院大學(中國科學院武漢物理與數(shù)學研究所);2017年
2 王躍循;一類流體力學方程組的初值問題的爆破與非存在性[D];清華大學;2016年
3 李吉娜;對稱約化在非線性演化方程的初值問題和群分類中的應用[D];西北大學;2011年
4 孫文華;非線性雙曲守恒律方程組的初值問題[D];上海大學;2007年
5 孫梅娜;最簡Chapman-Jouguet燃燒模型的兩類典型初值問題[D];上海大學;2007年
6 黃娟;能量臨界情形的非線性Schr(?)dinger方程[D];四川師范大學;2010年
相關碩士學位論文 前10條
1 劉建麗;時間分數(shù)階擴散方程反初值問題[D];蘭州大學;2016年
2 高曉紅;一類五階Korteweg-de-Vries方程Cauchy問題解的惟一連續(xù)性[D];西北大學;2016年
3 鐘明n,
本文編號:2425147
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2425147.html