數(shù)值李變換方法及Vlasov系統(tǒng)的非線性數(shù)值模擬研究
[Abstract]:Turbulent transport is one of the most important topics in the study of magnetically confined plasma. The quasilinear theory well predicts the transport of the system in some cases. However, in more nonlinear cases, the system transport caused by turbulence is still difficult to deal with theoretically. With the development of computer technology, numerical simulation has played a more and more important role in the study of plasma turbulence transport. This paper first introduces the simulation program of one-dimensional collision-free Vlasov system based on the new numerical lie transform method. The new program is based on the I- transformation theory and combines the continuity method and the feature line method numerically, which avoids the problem of large system noise in particle simulation and has the characteristics of strong numerical stability of the feature line method. A longer time step can be used in the simulation. In the computation, we use the multi-step transformation method to solve the inherent difficulty of the perturbation method in the particle capture problem numerically, so that the program can accurately simulate the evolution of the linear and nonlinear stages of the system. In the case of one-dimensional Landau damping problem and bimodal instability problem, the results obtained by the new program are in agreement with those obtained by the traditional method. Then we use the new program to analyze the particle transport in the velocity space in the stochastic electric field perturbation problem and the bimodal instability problem. Compared with the traditional simulation method, the new simulation method based on perturbation theory has a direct correlation between the intermediate variables and the transport coefficient, and the transport coefficient of the system can be easily obtained in the numerical calculation. The simulation results show that the transport coefficients obtained by the new simulation method are in good agreement with the actual results when the system is subjected to random field disturbances and linear turbulence disturbances. However, in the nonlinear stage of turbulence, due to the existence of large-scale structures, the transport coefficients calculated by the new method and the quasi-linear method are quite different from the actual results. Then we use the numerical lie transform program to calculate the entropy generation in the evolution of one dimensional collision-free systems. Different from the traditional formula used to calculate entropy, we adopt the widely accepted method of calculating the entropy of the system by using the mean distribution function of rough net. In the examples of random disturbance field, linear Landau damping and bimodal instability, we find that the entropy generation is convergent with the increase of average length of rough net, and when the distribution function is close to Maxwell distribution, The entropy generated by our calculations is consistent with the entropy generation defined by thermodynamics. We also discuss the influence of the average length of the rough net on the calculated entropy and the influence of the non-Maxwell distribution on the entropy calculation. Finally, the conservation and filtering problems in NLT nonlinear cyclotron simulation program based on the numerical lie transform method are discussed.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O53
【相似文獻】
相關期刊論文 前10條
1 張鈞強;;關于全變換方法的研究和探討[J];科技信息(科學教研);2008年09期
2 高婷婷;張明會;;分割變換方法在數(shù)學分析中的應用[J];首都師范大學學報(自然科學版);2013年05期
3 王國榮;簡逢敏;;直接解算誤差或條件方程組的平面映象變換方法[J];勘察技術;1978年02期
4 胡友秋;軸對稱磁靜平衡態(tài)Ⅰ.微變換方法[J];空間科學學報;1988年04期
5 劉林;;非正則形式變換方法的應用[J];南京大學學報(自然科學版);1983年02期
6 陳宇,王遵立,王瑞光,,樸燕;一種布爾變換及解變換方法在數(shù)據(jù)處理中的應用[J];發(fā)光學報;1996年03期
7 陳永衡;耦合振蕩規(guī)律的數(shù)學描述[J];煙臺師范學院學報(自然科學版);1998年03期
8 劉林;;關于非線性系統(tǒng)變換方法的幾點注解[J];天文學報;1982年03期
9 姚海敏;趙一晗;;自由網(wǎng)參考基準變換方法的探討[J];鐵道勘察;2006年06期
10 劉林,章圣泮;非正則形式的變換方法及其應用[J];中國科學(A輯 數(shù)學 物理學 天文學 技術科學);1983年05期
相關會議論文 前2條
1 劉麗華;肜淼;劉揚;商德江;;半空間全息變換方法反演材料反射系數(shù)[A];中國聲學學會2006年全國聲學學術會議論文集[C];2006年
2 暴雪梅;何祚鏞;;寬帶、非共形全息聲場變換方法[A];水下噪聲學術論文選集(1985-2005)[C];2005年
相關博士學位論文 前2條
1 陳特歡;管線流動最優(yōu)控制計算研究[D];浙江大學;2016年
2 戴宗良;數(shù)值李變換方法及Vlasov系統(tǒng)的非線性數(shù)值模擬研究[D];中國科學技術大學;2017年
相關碩士學位論文 前3條
1 李小英;基于Java的逆向變換方法及工具的研究[D];汕頭大學;2002年
2 周甄川;一個3×3矩陣譜問題及其Darboux變換[D];華東師范大學;2006年
3 向朝森;基于二值形態(tài)學的形態(tài)變換方法及應用[D];中南民族大學;2011年
本文編號:2388207
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2388207.html