一維系統(tǒng)中的Majorana費(fèi)米子和分?jǐn)?shù)費(fèi)米子
[Abstract]:In a system where the properties of low energy levels can be approximately described by Dirac electrons, Majorana fermions and fractional fermions appear in the form of zero-mode bound states at the boundary between the topological non-mediocre region and the mediocre region. The fundamental reason is that the scalar field coupled with Dirac spinor near the boundary presents a kink distribution. The scalar field of the kink type will open the energy gap of the system, and it is different from the scalar field of uniform distribution in topology. The Majorana fermion and fractional fermion appear under the nonmediocre scalar field of this topology. In the first chapter, we introduce several famous models and provide some theoretical support for the later chapters. In chapter 2, we study a one-dimensional Rashba system and find that the general periodic magnetic field can induce Majorana fermion and fractional fermion at its boundary. In this system, the Majorana fermion depends on the superconducting pairing potential introduced by the proximity effect, but the presence of fractional fermion is not necessary. Different from the uniform magnetic field, the periodic magnetic field can induce a lot of energy gaps in the energy spectrum of the system. When the chemical potential passes through any of the energy gaps, the introduction of the superconducting pairing potential makes the Majorana fermion appear at the system boundary. The fractional fermion appears in the overlapping part of the two energy gaps, and the period of the magnetic field must be an integer multiple of the coupling length of the Rashba spin orbit. The appearance of the two zero-mode bound states has no specific requirements for the specific form of magnetic field. In chapter 3, we study a one-dimensional single-chain lattice system composed of Majorana fermions. It is found that the tricritical Ising (TCI) phase transition occurs when the interaction of the system is strong enough. This type of phase transition is located at the intersection of the Ising phase transition and the first order phase transition and shows supersymmetry. We use the density matrix renormalization group method to study the system in detail and obtain the system parameters at the TCI phase transition point. We find that there is a strong interaction at this critical point, and it is difficult for a general system to achieve this intensity. However, we find that in a Majorana lattice system, in principle, the ratio of interaction to transition term can be arbitrarily changed by simply adjusting the chemical potential. So that it can reach the TCI phase transition point. In Chapter 4 we also consider the Majorana lattice system but this time it is a ladder shaped model which can be implemented on the surface of a topological insulator. Similar to the previous chapter, we find out the TCI phase transition point through detailed analytical and numerical analysis, the two sides of which are the Ising phase transition and the first order phase transition, respectively. The advantage of the model is that it does not require the system to have strong interaction. Finally, we discuss how to adjust the relevant parameters to make the system reach the TCI phase transition point and the characteristics of supersymmetry. In the last chapter, we briefly summarize the main findings of this paper and briefly discuss the possible research directions in the future.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O572.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬(wàn)陵德;余洪偉;程寶蓮;魯公儒;;分立對(duì)稱(chēng)性與三代費(fèi)米子的統(tǒng)一(Ⅱ)[J];新鄉(xiāng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1984年01期
2 江向東;;SU(6)大統(tǒng)一模型[J];高能物理與核物理;1984年03期
3 曾遠(yuǎn)文;費(fèi)米子算符的一些關(guān)系式[J];大學(xué)物理;1984年09期
4 鄭波;;可解的1+1維格點(diǎn)U(1)規(guī)范模型與費(fèi)米子加倍問(wèn)題[J];高能物理與核物理;1990年04期
5 羅向前;陳啟洲;;低維規(guī)范理論中的費(fèi)米子真空凝聚[J];高能物理與核物理;1992年08期
6 許伯威;費(fèi)米子數(shù)的時(shí)空性質(zhì)[J];蘭州大學(xué)學(xué)報(bào);1978年03期
7 許伯威;;費(fèi)米子數(shù)的時(shí)空性質(zhì)[J];高能物理與核物理;1979年01期
8 王維璽;;E_6的大統(tǒng)一模型[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1982年01期
9 孫洪洲;韓其智;;玻色子費(fèi)米子體系波函數(shù)的分類(lèi)[J];高能物理與核物理;1982年03期
10 馬中騏;東方曉;杜東生;薛丕友;;一個(gè)可能的SU(9)大統(tǒng)一模型[J];高能物理與核物理;1982年03期
相關(guān)會(huì)議論文 前1條
1 甘姝;汪凱戈;;雙費(fèi)米子的分束器干涉[A];第十三屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要集[C];2008年
相關(guān)重要報(bào)紙文章 前4條
1 記者 常麗君;美科學(xué)家造出全新量子物質(zhì)形態(tài)[N];科技日?qǐng)?bào);2012年
2 周清春;第六態(tài):敲開(kāi)物質(zhì)世界的又一扇大門(mén)[N];科技日?qǐng)?bào);2005年
3 張孟軍;科學(xué)家制出玻色-愛(ài)因斯坦凝聚態(tài)物質(zhì)[N];科技日?qǐng)?bào);2003年
4 記者 毛磊;2003年度最重要物理學(xué)新聞[N];新華每日電訊;2003年
相關(guān)博士學(xué)位論文 前5條
1 朱小宇;一維系統(tǒng)中的Majorana費(fèi)米子和分?jǐn)?shù)費(fèi)米子[D];南京大學(xué);2016年
2 李偉;狄拉克費(fèi)米子體系中的手征相變[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
3 王寧;基于Majorana費(fèi)米子的量子點(diǎn)體系中量子輸運(yùn)和自旋性質(zhì)的研究[D];河北師范大學(xué);2015年
4 王景榮;狄拉克費(fèi)米子體系中的量子相變和非費(fèi)米液體行為[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
5 李海濤;厚膜上的費(fèi)米子共振態(tài)[D];蘭州大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 鄭翌潔;拓?fù)浣^緣體臺(tái)階結(jié)構(gòu)以及Majorana費(fèi)米子的輸運(yùn)特性[D];河北師范大學(xué);2016年
2 苗子京;Majorana邊態(tài)導(dǎo)致的交叉Andreev反射研究[D];河北師范大學(xué);2016年
3 崔會(huì)麗;基于Majorana費(fèi)米子的熱電性質(zhì)[D];河北師范大學(xué);2014年
4 徐增光;膜世界上費(fèi)米子的新局域化機(jī)制及f(R)膜世界引力共振態(tài)的研究[D];蘭州大學(xué);2014年
5 寇朝帥;幺正費(fèi)米氣體熱力學(xué)量的低溫與高溫展開(kāi)[D];華中師范大學(xué);2014年
6 毛普健;5維黑洞背景下費(fèi)米子的霍金輻射[D];蘭州大學(xué);2012年
,本文編號(hào):2356033
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2356033.html