天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

高維開(kāi)放量子系統(tǒng)的非馬爾科夫動(dòng)力學(xué)研究

發(fā)布時(shí)間:2018-11-24 17:13
【摘要】:近些年,在開(kāi)放量子系統(tǒng)中廣泛存在的非馬爾科夫動(dòng)力學(xué)已經(jīng)吸引了研究人員廣泛的關(guān)注。通俗地講,量子非馬爾科夫動(dòng)力學(xué)過(guò)程實(shí)質(zhì)上就是開(kāi)放系統(tǒng)流向環(huán)境的信息重新流回系統(tǒng)的過(guò)程。而在信息重新流回系統(tǒng)的過(guò)程中,將會(huì)導(dǎo)致糾纏和量子跡距離等一些關(guān)鍵的物理量出現(xiàn)振蕩。開(kāi)放量子系統(tǒng)非馬爾科夫動(dòng)力學(xué)的研究所涉及的內(nèi)容是相當(dāng)廣泛的。在之前,大多數(shù)關(guān)于非馬爾科夫動(dòng)力學(xué)的研究都主要局限于二能級(jí)系統(tǒng),而關(guān)于高維度量子系統(tǒng)的研究卻很少涉及。然而,高維開(kāi)放系統(tǒng)和二能級(jí)系統(tǒng)一樣也是大量存在于自然之中,使用高維量子系統(tǒng)編碼還能提升量子密碼學(xué)的安全性,并且在量子容錯(cuò)計(jì)算和量子糾錯(cuò)中高維量子系統(tǒng)相較于二能級(jí)系統(tǒng)有無(wú)法比擬的優(yōu)勢(shì)。本文主要研究幾種典型的高維開(kāi)放量子系統(tǒng)的非馬爾科夫動(dòng)力學(xué)。在第一章中,我們主要介紹了關(guān)于量子信息、開(kāi)放量子系統(tǒng)和量子退相干的一些基礎(chǔ)知識(shí),包括量子跡距離、量子糾纏及其度量、量子動(dòng)力學(xué)映射、量子可分性、馬爾科夫主方程及非馬爾科夫主方程、三種典型的量子退相干通道等。在第二章中,我們主要介紹了四種相當(dāng)?shù)湫偷年P(guān)于量子非馬爾科夫性的度量方式。第一種為基于量子跡距離的度量方式,第二種為基于量子糾纏的度量方式,第三種為基于量子關(guān)聯(lián)的度量方式,第四種為基于量子可分性的度量方式。第三章,提出了一種精確求解和零溫波色環(huán)境相互作用的多能級(jí)V型原子非馬爾科夫動(dòng)力學(xué)的方法。特別關(guān)注了三能級(jí)V型原子的糾纏演化及其非馬爾科夫性。發(fā)現(xiàn)相較于非共振區(qū)域,在共振區(qū)域內(nèi)糾纏衰減得更快且非馬爾科夫性更弱。更為重要的是,本章展示了由不同傳輸通道所造成的非馬爾科夫性的干涉現(xiàn)象,并指出了干涉相長(zhǎng)區(qū)域和干涉相消區(qū)域。第四章,主要研究了處于退相位環(huán)境中的自旋S系統(tǒng)的糾纏演化和非馬爾科夫動(dòng)力學(xué)。精確的解析表達(dá)式表明退相干函數(shù)支配著自旋S系統(tǒng)動(dòng)力學(xué)過(guò)程中的相干性演化、糾纏演化和非馬爾科夫性。對(duì)于歐姆熱庫(kù)和亞歐姆熱庫(kù),糾纏隨時(shí)間單調(diào)的衰減,相應(yīng)的動(dòng)力學(xué)過(guò)程為馬爾科夫過(guò)程。而對(duì)于超歐姆熱庫(kù)而言,由于退相干函數(shù)是振蕩的,導(dǎo)致糾纏出現(xiàn)復(fù)蘇現(xiàn)象,相應(yīng)的動(dòng)力學(xué)過(guò)程為非馬爾科夫過(guò)程。在本章末尾,還探討了非馬爾科夫性和系統(tǒng)維度之間的關(guān)系。在第五章中,我們對(duì)本文的工作進(jìn)行了一個(gè)簡(jiǎn)短的總結(jié)與展望。
[Abstract]:In recent years, non-Markov dynamics, which widely exist in open quantum systems, have attracted much attention. In general, the quantum non-Markov dynamics process is essentially an open system flow to the environment of the information reflow back to the system process. In the process of information reflow back system, some key physical quantities, such as entanglement and quantum trace distance, will oscillate. The study of non-Markov dynamics of open quantum systems is quite extensive. Previously, most studies on non-Markov dynamics were mainly confined to two-level systems, but the studies of high-dimensional quantum systems were rarely involved. However, high dimensional open systems, like two-level systems, are abundant in nature, and the use of high-dimensional quantum system coding can also enhance the security of quantum cryptography. Moreover, in quantum fault-tolerant computation and quantum error correction, high-dimensional quantum systems have incomparable advantages over two-level systems. In this paper, the non-Markov dynamics of several typical high-dimensional open quantum systems are studied. In the first chapter, we mainly introduce some basic knowledge about quantum information, open quantum system and quantum decoherence, including quantum trace distance, quantum entanglement and its measurement, quantum dynamic mapping, quantum separability. Markov master equation and non-Markov master equation, three typical quantum decoherence channels, etc. In the second chapter, we mainly introduce four typical measures of quantum non-Markov property. The first is based on quantum trace distance, the second is based on quantum entanglement, the third is based on quantum correlation, and the fourth is based on quantum separability. In chapter 3, a method for solving the non-Markov dynamics of multi-level V-type atoms with zero temperature wave color environment is presented. Special attention is paid to the entanglement evolution of three-level V-type atoms and their non-Markov properties. It is found that entanglement in the resonance region attenuates faster and the non-Markov property is weaker than that in the non-resonant region. More importantly, this chapter shows the non-Markov interference caused by different transmission channels, and points out the long interference region and interference cancellation region. In chapter 4, the entanglement evolution and non-Markov dynamics of spin S system in dephase environment are studied. The exact analytical expression shows that the decoherence function dominates the coherence evolution, entanglement evolution and non-Markov property in the dynamics of the spin S system. For ohmic heat reservoirs and YAOM heat reservoirs, the entanglement decays monotonously with time, and the corresponding dynamical processes are Markov processes. For the super-ohmic heat reservoir, the decoherence function is oscillating, which leads to the recovery of entanglement, and the corresponding dynamic process is a non-Markov process. At the end of this chapter, the relationship between non-Markov property and system dimension is also discussed. In the fifth chapter, we give a brief summary and prospect of this paper.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O413

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高山珍,李俊紅,解建軍;7維廣義馬爾科夫方程的解[J];貴州教育學(xué)院學(xué)報(bào)(自然科學(xué));2000年02期

2 高山珍,高靜偉;廣義馬爾科夫方程解的存在性[J];河北職業(yè)技術(shù)師范學(xué)院學(xué)報(bào);2003年03期

3 蘇濤;詹原瑞;劉家鵬;李杰;;基于馬爾科夫轉(zhuǎn)換下的資本資產(chǎn)定價(jià)模型[J];系統(tǒng)管理學(xué)報(bào);2007年03期

4 周丹;袁永博;;基于分類思想的灰色馬爾科夫建設(shè)用地預(yù)測(cè)[J];建筑經(jīng)濟(jì);2011年S1期

5 包景東;隨機(jī)振蕩中的非馬爾科夫效應(yīng)[J];自然雜志;1992年05期

6 李文清,曹力,吳大進(jìn);非馬爾科夫多值噪聲驅(qū)動(dòng)下系統(tǒng)的平均第一通過(guò)時(shí)間[J];華中理工大學(xué)學(xué)報(bào);1992年06期

7 包景東;軌道抽樣法研究非馬爾科夫熱激活過(guò)程[J];計(jì)算物理;1992年03期

8 楊春巍;馬爾科夫質(zhì)量控制模型[J];重慶建筑大學(xué)學(xué)報(bào);1997年01期

9 曹昌祺;原子自發(fā)輻射的非馬爾科夫理論[J];量子光學(xué)學(xué)報(bào);2002年S1期

10 劉丹紅,張世英,蘇為東;馬爾科夫轉(zhuǎn)換的資本資產(chǎn)定價(jià)模型及其最大似然估計(jì)[J];天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2003年04期

相關(guān)會(huì)議論文 前2條

1 孫凱樂(lè);於亞飛;張智明;;自旋系統(tǒng)中非馬爾科夫的研究[A];第十六屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2014年

2 曹昌祺;;原子自發(fā)輻射的非馬爾科夫理論[A];第十屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文論文集[C];2002年

相關(guān)重要報(bào)紙文章 前3條

1 記者 吳長(zhǎng)鋒;時(shí)而馬爾科夫 時(shí)而非馬爾科夫[N];科技日?qǐng)?bào);2011年

2 本報(bào)駐俄羅斯記者  馬劍;“漂在石油上”的城市[N];人民日?qǐng)?bào);2006年

3 臧文茜;“橙色革命”如夢(mèng)方醒烏民眾悲觀看待“聯(lián)合政府”[N];第一財(cái)經(jīng)日?qǐng)?bào);2006年

相關(guān)博士學(xué)位論文 前5條

1 李繁飆;半馬爾科夫跳變系統(tǒng)的分析和綜合[D];哈爾濱工業(yè)大學(xué);2015年

2 謝東;開(kāi)放系統(tǒng)量子測(cè)量與控制的理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年

3 范子龍;高維開(kāi)放量子系統(tǒng)的非馬爾科夫動(dòng)力學(xué)研究[D];湖南師范大學(xué);2016年

4 鄒紅梅;非馬爾科夫環(huán)境下量子系統(tǒng)的非經(jīng)典效應(yīng)[D];湖南師范大學(xué);2014年

5 龍少華;奇異時(shí)滯馬爾科夫系統(tǒng)的容許性問(wèn)題研究[D];電子科技大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 喬鐵;帶半馬爾科夫切換的隨機(jī)系統(tǒng)的指數(shù)穩(wěn)定性[D];鄭州大學(xué);2015年

2 柏久麟;馬爾科夫機(jī)制轉(zhuǎn)換混合頻率數(shù)據(jù)模型的應(yīng)用[D];中央民族大學(xué);2015年

3 朱璽;中文微博情感傾向性分析研究[D];哈爾濱工業(yè)大學(xué);2015年

4 佟杰;基于改進(jìn)的隱馬爾科夫體制轉(zhuǎn)換ARMA-GARCH模型的高頻數(shù)據(jù)預(yù)測(cè)[D];北京理工大學(xué);2015年

5 張雁雁;面向行人防碰撞預(yù)警的駕駛員駕駛意圖辨識(shí)方法研究[D];大連理工大學(xué);2015年

6 吳銹;隨機(jī)分紅策略下離散風(fēng)險(xiǎn)模型的研究[D];重慶大學(xué);2015年

7 徐荇華;系統(tǒng)與環(huán)境的初始關(guān)聯(lián)對(duì)非馬爾科夫性的影響[D];北京理工大學(xué);2016年

8 喬轉(zhuǎn)轉(zhuǎn);用前饋控制方案保護(hù)在馬爾科夫和非馬爾科夫環(huán)境下的量子態(tài)[D];北京理工大學(xué);2016年

9 文可欽;具有時(shí)滯的馬爾科夫不確定參數(shù)隨機(jī)系統(tǒng)穩(wěn)定性分析[D];電子科技大學(xué);2013年

10 張盟;馬爾科夫調(diào)制跳擴(kuò)散模型下的歐式期權(quán)定價(jià)[D];蘇州大學(xué);2013年

,

本文編號(hào):2354439

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2354439.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶41364***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com