天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

一些二維材料的第一性原理計(jì)算與設(shè)計(jì)

發(fā)布時(shí)間:2018-09-13 12:15
【摘要】:材料在我們?nèi)粘Ia(chǎn)生活中扮演著非常重要的作用,并且其還推動(dòng)著人類(lèi)文明科學(xué)的進(jìn)展。人類(lèi)的文明經(jīng)歷了從石器時(shí)代,青銅器時(shí)代,以及鐵器時(shí)代等的演化,這些發(fā)展的過(guò)程都有一個(gè)相同的點(diǎn),那就是人類(lèi)對(duì)材料進(jìn)行發(fā)展和改良,F(xiàn)在,人們又對(duì)技術(shù)展開(kāi)了新的革新,比如半導(dǎo)體材料的發(fā)現(xiàn),以及大規(guī)模的投入生產(chǎn)應(yīng)用,使得人類(lèi)社會(huì)又進(jìn)入了更先進(jìn)的微電子時(shí)代,大大的豐富和改進(jìn)了人類(lèi)的生產(chǎn)生活。但是,由于自然界常規(guī)的材料非常有限,早已無(wú)法滿(mǎn)足人類(lèi)日益增長(zhǎng)地對(duì)材料的需求。這就使得人類(lèi)必須在現(xiàn)有的材料基礎(chǔ)上,通過(guò)已掌握的科學(xué)技術(shù)設(shè)計(jì)出具有特定功能的新型材料。可是,如果用常規(guī)的實(shí)驗(yàn)手段,對(duì)已有的材料進(jìn)行簡(jiǎn)單的組合,無(wú)疑需要投入大量的人力,物力和財(cái)力,這是很不現(xiàn)實(shí)的方法,而且效率也相對(duì)很低。另一方面,隨著量子力學(xué),量子化學(xué)的發(fā)展和改進(jìn),借助高性能的計(jì)算設(shè)備,我們可以用數(shù)值的方法求解一些復(fù)雜體系的薛定諤方程,進(jìn)而理論上得到一些體系的物理化學(xué)性質(zhì)。這樣我們就能初步的對(duì)材料進(jìn)行篩選,然后再進(jìn)行實(shí)驗(yàn)的驗(yàn)證,這就將大大的提高實(shí)驗(yàn)工作的效率,節(jié)省不必要的開(kāi)支。本論文的目的即在于介紹我們通過(guò)使用第一性原理計(jì)算,對(duì)現(xiàn)如今非常熱門(mén)的一類(lèi)新型材料——二維材料進(jìn)行研究,希望通過(guò)對(duì)其進(jìn)行改良和設(shè)計(jì),理論上得到我們需要的功能材料。通過(guò)對(duì)這些功能材料的研究,希望能解決目前人類(lèi)所面臨的能源緊缺,電子器件的改良和提升等方面的需求。本論文由如下六章組成。第一章首先簡(jiǎn)要介紹計(jì)算量子化學(xué)的基礎(chǔ)和理論框架,以及密度泛函理論。其中包含通常所使用的薛定諤方程,然后對(duì)這個(gè)基礎(chǔ)方程進(jìn)行的一些列處理簡(jiǎn)化,比如絕熱、單電子近似,Hohenberg-Kohn定理,Kohn-Sham方程,然后在此基礎(chǔ)上發(fā)展起來(lái)的適合諸多體系的各種交換關(guān)聯(lián)泛函。通過(guò)量子化學(xué)的方法,我們可以對(duì)體系的許多性質(zhì)進(jìn)行描述,也可以研究很多類(lèi)型的體系,在此基礎(chǔ)上人們還開(kāi)發(fā)出了很多的方法計(jì)算體系的各種性質(zhì)。最后再簡(jiǎn)單介紹幾種常用的基于密度泛函理論發(fā)展起來(lái)的計(jì)算軟件包。第二章主要介紹一些目前非常熱門(mén)的二維納米材料。其中,由于石墨烯是二維材料中的”明星“級(jí)材料,所以我們以其和其衍生物為開(kāi)端介紹了二維材料的發(fā)展和研究狀況。在此之外,我們還介紹了六方氮化硼的合成和基本的物理化學(xué)性質(zhì);過(guò)渡金屬硫化物目前的研究狀況,和在實(shí)際當(dāng)中的應(yīng)用;黑磷作為目前新發(fā)現(xiàn)的一種二維材料,一經(jīng)發(fā)現(xiàn)就引起了巨大的轟動(dòng),被人稱(chēng)作帶隙最合適的二維材料,大有超過(guò)石墨烯的趨勢(shì),我們也簡(jiǎn)要的對(duì)其性質(zhì)和特點(diǎn)進(jìn)行了介紹。第三章研究了一種新型的二維材料——鍺烷(Germanane, GeH)。鍺烷是最近實(shí)驗(yàn)上才新合成出來(lái)的一種新型二維材料,其有著很好的物理化學(xué)性質(zhì),在實(shí)際的應(yīng)用中具有很大的潛力。實(shí)驗(yàn)和理論的工作都顯示,這個(gè)材料具有1.56 eV的直接帶隙,說(shuō)明其在光解水方面能有所應(yīng)用;另一方面,其遷移率是鍺體材料的5倍,說(shuō)明在電子器件方面也能有所發(fā)展。而我們希望從理論上對(duì)這個(gè)材料進(jìn)行化學(xué)修飾,如取代的方法,繼續(xù)改進(jìn)這個(gè)材料的性質(zhì),使其具有更好的應(yīng)用前景。通常情況下,實(shí)驗(yàn)上常用氟元素進(jìn)行摻雜或取代,所以這里我們也選擇氟元素對(duì)我們的體系進(jìn)行取代,由于不同的摻雜比例,以及摻雜位置都可能對(duì)體系的性質(zhì)有影響。所以我們通過(guò)第一性原理計(jì)算的方法,搭建結(jié)構(gòu),考慮不同的取代濃度和取代位置,計(jì)算得到材料的電子結(jié)構(gòu)方面的性質(zhì)。主要有能帶的寬度,能級(jí)的位置等等。通過(guò)這些性質(zhì),我們可以改良這個(gè)材料的性質(zhì),得到理論上適合做光解水的材料,為實(shí)驗(yàn)工作提供了一個(gè)可行的方案。第四章我們主要介紹一下由清華大學(xué)帥志剛教授小組開(kāi)發(fā)的,利用第一性原理計(jì)算結(jié)合玻爾茲曼輸運(yùn)方程和弛豫時(shí)間近似理論來(lái)預(yù)測(cè)一些碳和有機(jī)材料的載流子遷移率。并且成功的計(jì)算出了比如石墨烯單層,石墨烯納米條帶的載流子遷移率,跟實(shí)驗(yàn)上測(cè)量的結(jié)果符合得非常的好。我們主要學(xué)習(xí)了他們這一方法,并且將其運(yùn)用到我們所關(guān)心的二維材料的計(jì)算當(dāng)中,預(yù)測(cè)出了一個(gè)新型的二維材料C5N的載流子遷移率。第五章介紹了一種利用雙層二維材料之間的弱相互作用——范德瓦爾斯(van der Waals, vdW)相互作用,去完成納米尺度的高精度測(cè)量。在納米尺度的高精度測(cè)量是一個(gè)非常具有價(jià)值的研究課題。目前幾乎所有的測(cè)量都集中在微米尺度(micro-scale)上,然而現(xiàn)在很多材料都已經(jīng)是納米尺度,所以我們急需發(fā)展一種新的手段去測(cè)量納米量級(jí)的物質(zhì)。常規(guī)的測(cè)量方法有光學(xué),壓電等方面。這些方法或多或少都具有缺陷和不足,所以我們需要發(fā)展一種新的方法去取代這些常規(guī)的方法。因此我們?cè)O(shè)計(jì)了一種新的方法,基于vdW相互作用的納米尺度測(cè)量方法。我們?cè)O(shè)想,通過(guò)vdW作用構(gòu)建一個(gè)雙層二維材料,固定其中一層,移動(dòng)另一層,如果移動(dòng)的過(guò)程中,這個(gè)材料的其他性質(zhì),比如帶隙的變化很大,這樣我們就能通過(guò)帶隙的變化來(lái)反映這個(gè)微小的位移,從而達(dá)到對(duì)納米尺度的測(cè)量。因?yàn)?vdW相互作用是一個(gè)很弱的相互作用,移動(dòng)其中一層,并不需要很大的能量或者力,所以這也可以作為測(cè)量微小作用下位移的方法;谝陨系臉(gòu)想,我們通過(guò)第一性原理設(shè)計(jì)和尋找,發(fā)現(xiàn)雙層藍(lán)磷(blue phosphorus)非常符合我們對(duì)這種材料的要求。并且也對(duì)比了其他雙層二維材料,得到了一個(gè)較為普適的規(guī)律,去尋找滿(mǎn)足這個(gè)條件的材料。第六章我們從理論上搜尋到了一種二維材料,而這種材料是基態(tài)反鐵磁的金屬,其具有非常好的物理化學(xué)性質(zhì),有可能作為很優(yōu)秀的自旋電子學(xué)器件。首先,低維材料在現(xiàn)代的納米科學(xué)和納米技術(shù)中起著非常重要的作用。其中,石墨烯的發(fā)現(xiàn)和制備成為二維材料發(fā)展的里程碑。近些年來(lái),其他的二維材料也有了長(zhǎng)足的發(fā)展,其中硅烯,鍺烯也表現(xiàn)出了跟石墨烯類(lèi)似的優(yōu)良的物理化學(xué)性質(zhì)。另一方面,自旋電子學(xué)在近些年也有著非常顯著的發(fā)展,通常我們使用的都是鐵磁材料作為自旋電子學(xué)的主要材料。而最近,反鐵磁自旋電子學(xué)卻吸引了越來(lái)越多的研究者的注意,主要在于反鐵磁有很多鐵磁所不具有的優(yōu)良的性質(zhì),這些性質(zhì)只要我們加以利用,可以表現(xiàn)出相比于鐵磁更好的特性。因此,我們希望找到一些低維的(如二維材料),具有優(yōu)良性質(zhì)的反鐵磁材料。這樣的材料之前并不多見(jiàn),能在較常規(guī)的情況下正常工作的,那更是幾乎沒(méi)有。所以我們希望通過(guò)第一性原理,配合全局搜索的方法,找到一種具有這些優(yōu)良性質(zhì)的材料。這不僅僅是理論的需要,更可以為實(shí)驗(yàn)上提供合成的方向。第七章我們研究了石墨烯/二碲化鎢異質(zhì)結(jié)材料的磁阻效應(yīng)。磁阻效應(yīng)存在于一些金屬和半導(dǎo)體當(dāng)中,具體是指這些材料的電阻在外加磁場(chǎng)的作用下會(huì)有一定的相應(yīng)。如果一個(gè)材料具有較大的磁阻效應(yīng),即對(duì)外加磁場(chǎng)的相應(yīng)非常明顯,則這個(gè)材料在電子學(xué)和磁學(xué)領(lǐng)域?qū)⒂锌赡苡泻苤匾膽?yīng)用前景,比如可以用來(lái)作為磁傳感器,磁存儲(chǔ)設(shè)備等。最近,實(shí)驗(yàn)上合成出了一種新的晶體材料—二碲化鎢,這種材料具有很大的磁阻效應(yīng),遠(yuǎn)高于之前所發(fā)現(xiàn)的其他磁阻材料,引起了巨大的轟動(dòng)。這里,我們?cè)O(shè)計(jì)了一個(gè)石墨烯/二碲化鎢組成的異質(zhì)結(jié)結(jié)構(gòu),兩個(gè)單層之間通過(guò)范德瓦爾斯相互作用結(jié)合在一起。我們用第一性原理計(jì)算,研究了這個(gè)材料的幾何結(jié)構(gòu),電子結(jié)構(gòu),以及磁學(xué)方面的性質(zhì)。我們發(fā)現(xiàn)這個(gè)異質(zhì)結(jié)材料,相比于二維的二碲化鎢,磁阻效應(yīng)上有很大的提升;另一方面,對(duì)比純凈的石墨烯,這個(gè)材料的載流子濃度有一定的增加,說(shuō)明在實(shí)際的應(yīng)用中,導(dǎo)電性比純凈的石墨烯更加的優(yōu)秀。整體看來(lái),異質(zhì)結(jié)在某些方面的性質(zhì)是要優(yōu)于個(gè)單組分的,這也達(dá)到了我們對(duì)材料設(shè)計(jì)的初衷。
[Abstract]:Material plays a very important role in our daily production and life, and it also promotes the progress of human civilization and science. Human civilization has undergone the evolution from the Stone Age, Bronze Age, and Iron Age, and so on. All these developments have the same point, that is, human development and improvement of materials. The discovery of semiconductor materials and large-scale production and application have brought the human society into a more advanced microelectronics era, greatly enriching and improving human production and life. Increasing demand for materials makes it impossible for humans to design new materials with specific functions on the basis of existing materials through the science and technology already mastered. However, it is unrealistic to invest a lot of manpower, material and financial resources in simple combinations of existing materials by conventional experimental means. On the other hand, with the development and improvement of quantum mechanics and quantum chemistry, and with the help of high-performance computing equipment, we can solve some complex Schrodinger equations by numerical methods, and then get some physical and chemical properties of the systems theoretically. So we can improve the materials preliminarily. The purpose of this paper is to introduce a new kind of material, two-dimensional material, which is very popular nowadays, by using the first-principles calculation, to study and improve it. This paper consists of six chapters. The first chapter briefly introduces the basic and theoretical framework of computational quantum chemistry, as well as the density. Functional theory. It contains the commonly used Schrodinger equation, and then simplifies some of the column treatments of this basic equation, such as adiabatic, single electron approximation, Hohenberg-Kohn theorem, Kohn-Sham equation, and then develops various exchange-related functions suitable for many systems on this basis. Many properties of the system can be described, and many types of systems can be studied. On this basis, many methods have been developed to calculate the properties of the system. Finally, several commonly used density functional theory-based computational software packages are briefly introduced. Two-dimensional nanomaterials, in which graphene is the "star" grade material in two-dimensional materials, we introduced the development and research status of two-dimensional materials at the beginning of graphene and its derivatives. In addition, we also introduced the synthesis and basic physical and chemical properties of hexagonal boron nitride; the current research status of transition metal sulfides As a new two-dimensional material, black phosphorus has caused a great sensation. It is called the most suitable two-dimensional material for band gap and has a tendency to exceed graphene. We also briefly introduce its properties and characteristics. In the third chapter, a new two-dimensional material is studied. Germanane (GeH) is a new type of two-dimensional material which has been synthesized recently. It has good physical and chemical properties and has great potential in practical application. On the other hand, its mobility is five times higher than that of germanium-based materials, indicating that it can also be developed in electronic devices. We hope that this material can be chemically modified theoretically, such as substitution method, and the properties of this material can be further improved so as to have a better application prospect. So here we also choose fluorine to replace our system, because different doping ratio and doping position may have an impact on the properties of the system. So we use the first-principles calculation method, build the structure, consider different substitution concentration and substitution position, calculate the electronic structure of the material. The properties of the surface, such as the width of the energy band, the position of the energy level and so on. Through these properties, we can improve the properties of this material, get a material suitable for photolysis water in theory, and provide a feasible scheme for the experimental work. The carrier mobility of some carbon and organic materials is predicted by using the Boltzmann transport equation and relaxation time approximation theory. The carrier mobility of graphene monolayer and graphene nanoribbon is calculated successfully, which is in good agreement with the experimental results. A new two-dimensional material C5N is predicted by applying this method to the calculation of two-dimensional materials of interest. In the fifth chapter, a novel two-dimensional material C5N with high precision at nanometer scale is introduced by using the van der Waals (vdW) interaction, which is a weak interaction between two-layer two-dimensional materials. Degree measurement. High precision measurement at nanoscale is a very valuable research topic. At present almost all the measurements are focused on micro-scale. However, many materials are already nano-scale, so we need to develop a new method to measure nano-scale materials. There are optical, piezoelectric, and so on. These methods are more or less defective and inadequate, so we need to develop a new method to replace these conventional methods. Determine one layer, move the other, and if other properties of the material, such as the band gap, change dramatically during the movement, then we can reflect this tiny shift through the band gap change to achieve nanoscale measurements. It requires a lot of energy or force, so it can also be used as a method to measure the displacement under small action. Based on the above idea, we design and find the double-layer blue phosphorus, which is very suitable for this material, and compared with other two-layer two-dimensional materials, we get a better one. In Chapter 6, we have theoretically searched for a two-dimensional material, which is a ground-state antiferromagnetic metal. It has very good physical and chemical properties and may be used as an excellent spintronic device. First, low-dimensional materials are used in modern nanoscience and nanotechnology. The discovery and preparation of graphene has become a milestone in the development of two-dimensional materials. In recent years, other two-dimensional materials have made considerable progress. Among them, silicone and germanium also exhibit excellent physical and chemical properties similar to graphene. On the other hand, spintronics also has non-spintronics in recent years. Recently, antiferromagnetic spintronics has attracted more and more researchers'attention. The main reason is that antiferromagnetism has many excellent properties that ferromagnetism does not have. These properties can show phase if we use them. Therefore, we hope to find some low-dimensional (such as two-dimensional materials), with good properties of anti-ferromagnetic materials. Such materials are rare before, can work under more conventional circumstances, it is almost No. So we hope to use the first principle, with the global search method, to find one. In Chapter 7, we study the magnetoresistance effect of graphene/tungsten telluride heterojunction materials. The magnetoresistance effect exists in some metals and semiconductors, specifically the effect of the resistance of these materials on the applied magnetic field. If a material has a relatively large magnetoresistive effect, i.e. the corresponding effect on the applied magnetic field is very obvious, then this material may have important application prospects in the fields of electronics and magnetism, for example, it can be used as magnetic sensors, magnetic storage devices and so on. Recently, a new crystal material has been synthesized experimentally. Material-tungsten telluride, which has a very large magnetoresistive effect, is much higher than other magnetoresistive materials previously discovered, causing a huge stir. Here, we design a heterojunction structure consisting of graphene/tungsten telluride. The two monolayers are bonded by van der Waals interaction. We use first-principles calculations. We find that the magnetoresistance effect of this heterojunction material is much higher than that of two-dimensional tungsten telluride. On the other hand, compared with pure graphene, the carrier concentration of this material increases to a certain extent, indicating that in practical applications, Conductivity is better than pure graphene. Overall, heterojunctions are superior in some respects to a single component, which is what we intended for material design.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TB383;O413.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄭傳慶;林潔;解研;劉紹軍;;高壓下第一性原理計(jì)算中銅的芯價(jià)態(tài)劃分[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期

2 肖鵬;;Sr_2Mn_2CuAs_2O_2的第一性原理計(jì)算研究[J];江漢大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期

3 張召富;周鐵戈;左旭;;氧、硫摻雜六方氮化硼單層的第一性原理計(jì)算[J];物理學(xué)報(bào);2013年08期

4 杜世萱;高鴻鈞;;功能分子結(jié)構(gòu)的組裝和單分子物性:基于密度泛函理論的第一性原理計(jì)算與掃描隧道顯微學(xué)(I)[J];物理學(xué)進(jìn)展;2008年02期

5 于冬琪;張朝暉;;帶狀碳單層與石墨基底之間相互作用的第一性原理計(jì)算[J];物理學(xué)報(bào);2011年03期

6 吳楊;趙登冰;金慶華;王玉芳;李寶會(huì);丁大同;;納米管的第一性原理計(jì)算[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期

7 譚世勇;賴(lài)新春;黃理;張永彬;;鈾的彈性、能帶結(jié)構(gòu)和光學(xué)常數(shù)的第一性原理計(jì)算[J];原子與分子物理學(xué)報(bào);2008年05期

8 劉本瓊;謝雷;段曉溪;孫光愛(ài);陳波;宋建明;劉耀光;汪小琳;;鈾的結(jié)構(gòu)相變及力學(xué)性能的第一性原理計(jì)算[J];物理學(xué)報(bào);2013年17期

9 劉學(xué)杰;張素慧;姜永軍;任元;譚心;;單粒子在金剛石(001)表面吸附與遷移的第一性原理計(jì)算[J];人工晶體學(xué)報(bào);2014年03期

10 李林;姚蘭芳;王碩;許瑞清;田琳琳;方學(xué)玲;;釹摻雜銳鈦礦二氧化鈦的第一性原理計(jì)算[J];材料導(dǎo)報(bào);2011年S1期

相關(guān)會(huì)議論文 前10條

1 吳忠慶;Renata Wentzcovitch;;高溫高壓彈性的第一性原理計(jì)算新方法及應(yīng)用[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年

2 趙麗軍;張小超;樊彩梅;賈金田;梁鎮(zhèn)海;韓培德;;納米鈦酸鎳材料結(jié)構(gòu)模擬及第一性原理計(jì)算[A];第十一屆全國(guó)計(jì)算(機(jī))化學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年

3 羅曉光;李金平;張幸紅;韓杰才;董善亮;;第一性原理計(jì)算氯化鈉型過(guò)渡金屬硼化物的彈性性質(zhì)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

4 陳灝;蔣鋒;周永西;梁云燁;R.Note;H.Mizuseki;Y.Kawazoe;;分子電子學(xué)和第一性原理計(jì)算(英文)[A];量子電荷和自旋輸運(yùn)研討會(huì)論文集[C];2005年

5 董錦明;翁紅明;Y.Kawazoe;T.Fukumura;M.Kawasaki;;磁光效應(yīng)和材料磁光性質(zhì)的第一性原理計(jì)算[A];量子電荷和自旋輸運(yùn)研討會(huì)論文集[C];2005年

6 秦敬玉;厲瑞艷;楊磊;;基于逆蒙特卡羅和第一性原理計(jì)算聯(lián)合的Fe-B-Si非晶結(jié)構(gòu)分析[A];第三屆散裂中子源多學(xué)科應(yīng)用研討會(huì)論文集[C];2006年

7 姚超;吳忠慶;;第一性原理計(jì)算高溫高壓下Magnesite的狀態(tài)方程、彈性、波速和密度[A];2014年中國(guó)地球科學(xué)聯(lián)合學(xué)術(shù)年會(huì)——專(zhuān)題11:深部高壓結(jié)構(gòu)、過(guò)程及地球物理響應(yīng)論文集[C];2014年

8 張喬麗;袁大慶;張煥喬;范平;左翼;鄭永男;K.Masuta;M.Fukuda;M.Mihara;T.Minamisono;A.Kitagawa;朱升云;;P在α-Al_2O_3中電場(chǎng)梯度的第一性原理計(jì)算[A];第十四屆全國(guó)核結(jié)構(gòu)大會(huì)暨第十次全國(guó)核結(jié)構(gòu)專(zhuān)題討論會(huì)論文摘要[C];2012年

9 侯士敏;;納電子器件電學(xué)特性的第一性原理計(jì)算[A];2005年納米和表面科學(xué)與技術(shù)全國(guó)會(huì)議論文摘要集[C];2005年

10 趙憲庚;;院長(zhǎng)致辭[A];中國(guó)工程物理研究院科技年報(bào)(2012年版)[C];2012年

相關(guān)博士學(xué)位論文 前10條

1 蔣好;鐵基超導(dǎo)體的晶體化學(xué)以及第一性原理計(jì)算并輔助探索新型超導(dǎo)材料[D];浙江大學(xué);2015年

2 朱慧平;半導(dǎo)體中缺陷及電子特性的第一性原理研究[D];南京大學(xué);2015年

3 黃世娟;正電子理論計(jì)算及其在分析材料微結(jié)構(gòu)中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年

4 戴足陽(yáng);高分辨小分子光譜計(jì)算研究[D];清華大學(xué);2014年

5 胡麟;一些二維材料的第一性原理計(jì)算與設(shè)計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年

6 張濱;Fe-Cr合金濺射納米晶薄膜腐蝕電化學(xué)行為的XPS及第一性原理計(jì)算的研究[D];大連理工大學(xué);2016年

7 楊軍;導(dǎo)電性超硬材料的第一性原理計(jì)算研究[D];上海交通大學(xué);2011年

8 何建平;鈦酸鍶鋇結(jié)構(gòu)及其極化特性的第一性原理計(jì)算與實(shí)驗(yàn)研究[D];華中科技大學(xué);2012年

9 馮頁(yè)新;二維碳基材料的催化特性和生長(zhǎng):第一性原理計(jì)算研究[D];南開(kāi)大學(xué);2013年

10 孫博;金屬表面與原子/分子相互作用的第一性原理計(jì)算研究[D];中國(guó)工程物理研究院;2009年

相關(guān)碩士學(xué)位論文 前10條

1 邱燁;用第一性原理計(jì)算研究M_3AX_2相材料的點(diǎn)缺陷[D];蘭州大學(xué);2015年

2 李婷婷;鈹和氧化鈹電子、彈性性質(zhì)的第一性原理計(jì)算[D];寧夏大學(xué);2015年

3 陳浩;壓力場(chǎng)中鍺光學(xué)性質(zhì)的第一性原理計(jì)算與實(shí)驗(yàn)分析[D];武漢理工大學(xué);2015年

4 李小波;釔穩(wěn)定氧化鋯空位型缺陷的第一性原理計(jì)算[D];湖南師范大學(xué);2015年

5 彭思雯;Mg-Zn系鎂合金第一性原理計(jì)算[D];沈陽(yáng)工業(yè)大學(xué);2016年

6 崔莉;VN/TiN體系的修正嵌入原子相互作用勢(shì)函數(shù)的研究[D];重慶大學(xué);2015年

7 周,

本文編號(hào):2241147


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2241147.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)66157***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com