LHAASO WCDA讀出電子學(xué)時鐘同步與數(shù)據(jù)傳輸研究
[Abstract]:Cosmic rays are energetic particles that arrive at Earth from space. The main components of cosmic rays include charged particles, gamma photons and neutrinos. Cosmic rays originate from the evolution and energetic activities of various celestial bodies and are influenced by various interstellar media and electromagnetic fields during their propagation. On the other hand, the study of cosmic rays and their origins can help us understand the origin, development and evolution of the universe. As a neutral particle, gamma photons are not susceptible to the interference of magnetic field to change the direction of propagation. A plan to build a large high altitude air Shower Observatory (LHAASO) has been proposed. The LHAASO is more than 4,000 meters above sea level and consists of several sub-detectors, namely, a wide-angle Cherenkov telescope array, a muon detector, an electromagnetic particle detector, and a water Cherenkov Detecto detector array. WCDA consists of three pools, covering an area of about 80,000 square meters, in which 3120 photomultiplier tubes (PMTs) are distributed. The scheme avoids the attenuation, noise and interference caused by long cable transmission, and reduces the cost of high quality long cable. Accordingly, FEE is required to transmit the data results through a distance of 400-500 meters to the back-end data acquisition system (DAQ). In CDA electronics, optical fibers are used to transmit signals, and commands, data, and clocks are fused into a single fiber for hybrid transmission. LHAASO is located on a plateau with a harsh environment, a large temperature difference in the four seasons, and no temperature control conditions are available for electronics and optical fibers. It is a key technology and design difficulty in WCDA readout electronics to realize high precision clock phase synchronization and alignment in space range and variable temperature environment.White Rabbit (WR) technology is a good clock synchronization method for large scale space,but its precision can only be guaranteed. At the sub-nanosecond level, there is no systematic solution to the problem of electronics and fiber path delay varying with temperature in the previous work at home and abroad and in my laboratory, or the phase compensation based on temperature sensor real-time test environment temperature matching look-up table is proposed. In order to ensure the accuracy of phase synchronization of the whole system, a method based on delayed incremental allocation is proposed to realize high precision automatic phase synchronization without the use of temperature sensors and other peripheral devices. In addition, WCDA electronics uses a data acquisition method without hardware trigger, that is, FEE needs to read out all data, and then use software to trigger the data selection, which can increase the flexibility of data analysis, but the speed and reliability of FEE data transmission are improved accordingly. For this reason, WCDA readout electronics requires high-speed data encapsulation of TCP/IP protocol. According to the overall consideration of LHAASO data and clock, WR switch is required to be used as the aggregation node of clock and data. For this reason, this paper also needs to study the custom clock phase synchronization circuit, TCP/IP encapsulation logic and WR. The structure of this paper is as follows: Chapter 1 mainly introduces the history, current situation and detection methods of cosmic rays; then introduces the LHAASO experiment and its scientific objectives, describes the readout electronics index and overall structure of WCDA, especially for clock and data transmission. Chapter 2 investigates clock and data transmission techniques in some large-scale physical experiments. The clock and data transmission techniques used in these experiments provide a good reference for WCDA clock and data transmission schemes. In order to meet the requirements of WCDA readout electronics, it is necessary to synchronize the clock phase in large-scale space and in variable temperature environment, and to realize high-speed data transmission based on TCP/IP in front-end FEE. Chapter 4 mainly introduces the realization of hardware electronics, and describes the hardware circuit and logic function in detail. Chapter 5 tests the clock synchronization and data transmission electronics system. In the aspect of clock synchronization performance test, the clock jitter performance is tested first, and then the single-layer and multi-layer WR are used to intersect. In the aspect of data transmission test, data rate test and bit error rate test of single FEE and multiple FEEs are carried out respectively. Finally, the existing work of this paper is summarized and the future work direction is prospected.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O572.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝瑞國,繆強(qiáng);9210工程地市(縣)級數(shù)據(jù)傳輸處理本地化的若干問題[J];四川氣象;2001年01期
2 韋振錦;方華;成春艷;;三層結(jié)構(gòu)在醫(yī)保數(shù)據(jù)傳輸中的應(yīng)用[J];廣西科學(xué)院學(xué)報;2007年04期
3 劉曉度;;基于嵌入式LINUX技術(shù)和GPRS網(wǎng)絡(luò)的數(shù)據(jù)傳輸[J];科技創(chuàng)業(yè)月刊;2007年03期
4 丁官元;王俊清;;電力系統(tǒng)GPRS數(shù)據(jù)傳輸安全性研究[J];黑龍江科技信息;2007年12期
5 鄧昕才;;基于Web Service的海量數(shù)據(jù)傳輸技術(shù)研究與實(shí)現(xiàn)[J];貴州師范大學(xué)學(xué)報(自然科學(xué)版);2008年04期
6 李海燕;張宗峰;;3G通訊在地震觀測數(shù)據(jù)傳輸中的應(yīng)用[J];信息與電腦(理論版);2013年04期
7 劉鋒;姜殿榮;馮曉玲;;柳州雷達(dá)數(shù)據(jù)傳輸監(jiān)控系統(tǒng)[J];氣象研究與應(yīng)用;2014年02期
8 呂學(xué)謙;;海上衛(wèi)星數(shù)據(jù)傳輸開始試驗(yàn)[J];國外油氣勘探;1983年02期
9 張朝昌,馬春艷;自動氣象站數(shù)據(jù)傳輸故障的原因分析[J];山東氣象;2003年03期
10 路嘉揚(yáng);張文祥;;基于ZigBee的無線網(wǎng)絡(luò)通用數(shù)據(jù)傳輸系統(tǒng)設(shè)計研究[J];科技情報開發(fā)與經(jīng)濟(jì);2014年14期
相關(guān)會議論文 前10條
1 戴志剛;;數(shù)據(jù)傳輸?shù)慕鉀Q方案[A];’2001天津信息技術(shù)、電子、儀器儀表學(xué)術(shù)會議論文集[C];2001年
2 李非;;淺談無線數(shù)據(jù)傳輸?shù)慕M網(wǎng)和應(yīng)用[A];天津市電視技術(shù)研究會2012年年會論文集[C];2012年
3 黃少杰;張曉瑩;鄒俊偉;;基于ZE5嵌入式開發(fā)平臺的GPRS數(shù)據(jù)傳輸[A];2008通信理論與技術(shù)新進(jìn)展——第十三屆全國青年通信學(xué)術(shù)會議論文集(上)[C];2008年
4 刁兆坤;;支持高速數(shù)據(jù)傳輸?shù)腃DMA 1X EV-DO技術(shù)及演進(jìn)[A];2005'中國通信學(xué)會無線及移動通信委員會學(xué)術(shù)年會論文集[C];2005年
5 孫文彬;杜志剛;賈萬鵬;付志剛;;邯鋼鋼卷噴號機(jī)數(shù)據(jù)傳輸邏輯時序分析與改進(jìn)[A];全國冶金自動化信息網(wǎng)2009年會論文集[C];2009年
6 陳宇曉;唐丹;孫穎銘;;基于CDMA的無線數(shù)據(jù)傳輸平臺[A];中國工程物理研究院科技年報(2005)[C];2005年
7 韋振錦;方華;成春艷;;三層結(jié)構(gòu)在醫(yī)保數(shù)據(jù)傳輸中的應(yīng)用[A];廣西計算機(jī)學(xué)會2007年年會論文集[C];2007年
8 吳慧倫;;數(shù)據(jù)傳輸終端設(shè)備的可靠性分析及設(shè)計[A];2009第十三屆全國可靠性物理學(xué)術(shù)討論會論文集[C];2009年
9 鄒程;魏銀庫;劉憶輝;;基于GSM無線網(wǎng)絡(luò)的數(shù)據(jù)傳輸應(yīng)用研究[A];全國ISNBM學(xué)術(shù)交流會暨電腦開發(fā)與應(yīng)用創(chuàng)刊20周年慶祝大會論文集[C];2005年
10 曾又枝;王慶輝;邢麗平;王迎迎;向立莉;;micaps數(shù)據(jù)傳輸和處理優(yōu)化[A];2008年湖北省氣象學(xué)會學(xué)術(shù)年會學(xué)術(shù)論文詳細(xì)文摘匯集[C];2008年
相關(guān)重要報紙文章 前10條
1 記者 田學(xué)科;新方法可極大提高移動自組織網(wǎng)效率[N];科技日報;2012年
2 凌曼文;您的心臟已經(jīng)聯(lián)網(wǎng),數(shù)據(jù)傳輸中……[N];中國計算機(jī)報;2007年
3 曉峰;我國在CDMA數(shù)據(jù)傳輸核心設(shè)備領(lǐng)域爭得發(fā)言權(quán)[N];中國經(jīng)營報;2002年
4 于翔;WANScaler鏈路加速進(jìn)行時[N];網(wǎng)絡(luò)世界;2007年
5 郝宇紅;TCP不能保證數(shù)據(jù)傳輸?shù)娜f無一失[N];中國計算機(jī)報;2000年
6 本報記者 吳玉征;跨境數(shù)據(jù)傳輸 安全為先[N];計算機(jī)世界;2012年
7 馮衛(wèi)東;美開發(fā)高速數(shù)據(jù)傳輸新技術(shù)[N];科技日報;2009年
8 ;GPRS為保險營業(yè)前臺聯(lián)線建網(wǎng)[N];計算機(jī)世界;2005年
9 厲建超;美國因特網(wǎng)的規(guī)模和增長速度[N];廠長經(jīng)理日報;2000年
10 陳思;雙流數(shù)據(jù)傳輸[N];中國計算機(jī)報;2003年
相關(guān)博士學(xué)位論文 前8條
1 任健康;信息物理系統(tǒng)高效數(shù)據(jù)傳輸和調(diào)度機(jī)制研究[D];大連理工大學(xué);2015年
2 褚少平;LHAASO WCDA讀出電子學(xué)時鐘同步與數(shù)據(jù)傳輸研究[D];中國科學(xué)技術(shù)大學(xué);2017年
3 秦爽;資源受限機(jī)會網(wǎng)絡(luò)中的數(shù)據(jù)傳輸建模與分析[D];電子科技大學(xué);2012年
4 徐飛;藍(lán)牙數(shù)據(jù)傳輸增強(qiáng)技術(shù)研究及其基帶芯片設(shè)計實(shí)現(xiàn)[D];西安電子科技大學(xué);2013年
5 趙慧;機(jī)會網(wǎng)絡(luò)的數(shù)據(jù)傳輸與應(yīng)用研究[D];電子科技大學(xué);2013年
6 馬春梅;城市環(huán)境VANETs數(shù)據(jù)傳輸及智能安全行駛研究[D];電子科技大學(xué);2015年
7 俞欣;多跳無線網(wǎng)絡(luò)中緩存分布與訪問調(diào)度研究[D];華中科技大學(xué);2011年
8 黎勇;實(shí)時協(xié)同圖案設(shè)計優(yōu)化數(shù)據(jù)傳輸若干問題研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 朱少杰;某衛(wèi)星Ka頻段高速數(shù)據(jù)傳輸系統(tǒng)仿真與設(shè)計[D];上海交通大學(xué);2014年
2 許新玲;基于北斗的氣象數(shù)據(jù)傳輸終端設(shè)計[D];中國科學(xué)院大學(xué)(工程管理與信息技術(shù)學(xué)院);2015年
3 司恩波;WIA-PA工業(yè)無線控制網(wǎng)絡(luò)數(shù)據(jù)傳輸調(diào)度[D];北京化工大學(xué);2015年
4 李文琳;基于車載自組織網(wǎng)絡(luò)的智能停車導(dǎo)航系統(tǒng)研究[D];電子科技大學(xué);2015年
5 黨小彩;短波數(shù)據(jù)傳輸鏈路層協(xié)議設(shè)計與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
6 杜力;RFID系統(tǒng)的數(shù)據(jù)傳輸優(yōu)化與安全技術(shù)研究[D];電子科技大學(xué);2014年
7 李婕;嵌入式多線程高速數(shù)據(jù)實(shí)時傳輸軟件設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
8 黃震;高速數(shù)據(jù)傳輸控制卡的設(shè)計與實(shí)現(xiàn)[D];解放軍信息工程大學(xué);2015年
9 郭文光;低功耗多通道多方式數(shù)據(jù)傳輸控制系統(tǒng)研究及應(yīng)用[D];北方工業(yè)大學(xué);2016年
10 牛聰;云計算數(shù)據(jù)傳輸優(yōu)化和智能卸載策略[D];鄭州大學(xué);2016年
,本文編號:2218202
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2218202.html