天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

大氣壓沿面介質(zhì)阻擋放電等離子體特性研究

發(fā)布時(shí)間:2018-08-23 19:46
【摘要】:沿面介質(zhì)阻擋放電(Surface Dielectric Barrier Discharge,SDBD)等離子體產(chǎn)生技術(shù)由于放電空間受限制較小,結(jié)構(gòu)簡(jiǎn)單,動(dòng)態(tài)響應(yīng)快,可以在介質(zhì)表面產(chǎn)生面積大且較為均勻的等離子體層,避免了電弧的產(chǎn)生,并具有較高的功率密度,還會(huì)產(chǎn)生種類繁多的活性粒子,例如臭氧(O3)、氧原子(O)、雙氧水(H2O2)、羥基(OH)等以及它們的激發(fā)態(tài)粒子,在空氣動(dòng)力學(xué)、生物醫(yī)學(xué)以及環(huán)境保護(hù)等領(lǐng)域有著廣闊的應(yīng)用前景,是近年來的研究熱點(diǎn)。目前,國(guó)內(nèi)外對(duì)沿面介質(zhì)阻擋放電及其應(yīng)用的研究尚處于探索階段,對(duì)其放電特性的影響因素缺乏規(guī)律性認(rèn)識(shí)。因此開展不同參數(shù)下沿面介質(zhì)阻擋放電特性的研究,對(duì)于推動(dòng)其應(yīng)用具有重要的理論意義和工程價(jià)值。本文搭建了大氣壓空氣沿面介質(zhì)阻擋放電產(chǎn)生裝置和光電特性檢測(cè)平臺(tái),可以實(shí)現(xiàn)放電電壓和電流波形等電學(xué)參數(shù)測(cè)量,以及發(fā)光圖像和發(fā)射光譜等光學(xué)特性診斷。并基于放電的物理過程和實(shí)驗(yàn)結(jié)果,分別建立了正弦波交流電源與納秒脈沖電源作用下等離子體激勵(lì)器集總參數(shù)等效電路模型,通過實(shí)驗(yàn)和電路仿真,對(duì)大氣壓沿面介質(zhì)阻擋放電進(jìn)行研究,主要包含以下內(nèi)容:系統(tǒng)地研究了納秒脈沖電源作用下沿面介質(zhì)阻擋放電的基本特性,并進(jìn)一步分析了不同納秒脈沖電源重復(fù)頻率作用下,激勵(lì)器電極對(duì)稱性、背面電極封裝以及對(duì)稱電極電源接線方式(HV-GND和GND-HV)對(duì)沿面介質(zhì)阻擋放電伏安特性、沉積能量、傳輸電荷、N2 (C3nu→B3∏g)及N2+(B2∑u+→X2∑g+,0-0, 391.4nm)譜線強(qiáng)度、N2(C3∏u)振動(dòng)溫度與轉(zhuǎn)動(dòng)溫度的影響。得到了如下結(jié)果:隨著脈沖重復(fù)頻率增加,沉積能量與傳輸電荷減小,對(duì)應(yīng)的發(fā)射譜線強(qiáng)度出現(xiàn)明顯的上升,N2(C3∏u)轉(zhuǎn)動(dòng)溫度增加,振動(dòng)溫度下降。與非對(duì)稱激勵(lì)器相比,對(duì)稱激勵(lì)器結(jié)構(gòu)對(duì)應(yīng)的放電起始時(shí)刻早,具有較高的電流值、沉積能量、傳輸電荷、N2(C3∏u)振動(dòng)溫度和轉(zhuǎn)動(dòng)溫度和發(fā)射光譜強(qiáng)度。背面電極封裝后發(fā)射光譜強(qiáng)度增強(qiáng),N2(C3∏u)振動(dòng)溫度與轉(zhuǎn)動(dòng)溫度增加,封裝有利于提高能量利用效率。由于極性效應(yīng),HV-GND對(duì)應(yīng)的放電起始時(shí)刻晚于GND-HV形式,但是具有較高的電流峰值、沉積能量、傳輸電荷、N2(C3∏u)振動(dòng)溫度和轉(zhuǎn)動(dòng)溫度。對(duì)比研究了正弦波電源作用下沿面介質(zhì)阻擋放電伏安特性、放電功率和傳輸電荷、N2 (C3∏u→B3∏g)及N2+(B2∑U+→X2∑g+,0-0,391.4nm)譜線強(qiáng)度、N2(C3nu)振動(dòng)溫度和轉(zhuǎn)動(dòng)溫度等參數(shù)的特點(diǎn),并給出了隨著電源頻率的變化,激勵(lì)器電極對(duì)稱性、背面電極封裝以及對(duì)稱電極的電源接線方式(HV-GND和GND-HV)對(duì)上述等離子體參量的影響。得到的主要結(jié)論包括:與納秒脈沖電源作用下SDBD等離子體特性相比,正弦波作用下SDBD對(duì)應(yīng)的N2(C3nu)轉(zhuǎn)動(dòng)溫度較高,但N2(C3nu)振動(dòng)溫度低,放電電流幅值遠(yuǎn)低于同等條件下納秒脈沖放電電流。兩種電源作用下發(fā)射光譜組成相同。頻率的增加有利于放電的加強(qiáng),正弦波電源作用下激勵(lì)器電極對(duì)稱性、背面電極封裝對(duì)放電參數(shù)的影響與納秒脈沖電源規(guī)律一致,但由于正弦波為交流電源,因此HV-GND和GND-HV兩種電源對(duì)應(yīng)的SDBD放電等離子體參數(shù)變化不大。在正弦波電源作用下沿面介質(zhì)阻擋放電實(shí)驗(yàn)平臺(tái)的基礎(chǔ)上,研究了引入氬氣氣流之后伏安特性、放電圖像、發(fā)射光譜特性、N2(C3∏u)振動(dòng)溫度和轉(zhuǎn)動(dòng)溫度的變化以及氮分子的激發(fā)和電離過程。進(jìn)一步分析了加入氬氣之后N2 (C3∏u→ B3∏g,0-0,337.1nm)、N2+(B2∑u+→X2∑g+,0-0,391.4nm:)以及Ar I (2P1→ 1S2,750.39nm)發(fā)射譜線強(qiáng)度、N2(C3 ∏u)振動(dòng)溫度和轉(zhuǎn)動(dòng)溫度等參數(shù)空間分布特點(diǎn)。深入探討了改變氬氣流量、管距、電源電壓幅值以及頻率對(duì)放電等離子體特性參數(shù)的影響。結(jié)果表明,氬氣引入之后,放電強(qiáng)度和均勻性明顯增加,產(chǎn)生了穩(wěn)定的大面積放電等離子體,N2(C3∏u)轉(zhuǎn)動(dòng)溫度升高,有利于增加動(dòng)量傳遞效率,提高氣流誘導(dǎo)速度?臻g測(cè)量結(jié)果表明:譜線強(qiáng)度、轉(zhuǎn)動(dòng)溫度在中心處最強(qiáng),且隨著到極板邊緣距離的減少而減弱;N2(C3∏u)振動(dòng)溫度的變化與轉(zhuǎn)動(dòng)溫度相反。另外,隨著氬氣流量增加,放電強(qiáng)度先增加后減弱,N2(C3∏u)轉(zhuǎn)動(dòng)溫度升高,加入氬氣之后N2(C3∏u)振動(dòng)溫度先下降,之后隨流量增加先增加后減小并趨于穩(wěn)定,電子激發(fā)溫度受流量影響較。浑S著管距的增加,放電減弱,發(fā)射光譜強(qiáng)度、放電功率、電子激發(fā)溫度以及N2(C3∏u)轉(zhuǎn)動(dòng)溫度出現(xiàn)了大幅下降,但N2(C3∏u)振動(dòng)溫度增加;增加電源電壓幅值和頻率,譜線強(qiáng)度增加,N2(C3∏u)轉(zhuǎn)動(dòng)溫度、放電功率以及電子激發(fā)溫度增加,但對(duì)N2(C3∏u)振動(dòng)溫度的影響比較小。以非對(duì)稱結(jié)構(gòu)沿面介質(zhì)阻擋放電等離子體激勵(lì)器為研究對(duì)象,基于放電的物理過程和實(shí)驗(yàn)結(jié)果,分別建立了正弦波電源與納秒脈沖電源作用下等離子體激勵(lì)器集總參數(shù)等效電路模型,通過拍攝高速放電圖像,估測(cè)了等離子體幾何尺寸,借助matlab/simulink軟件,聯(lián)立波爾茲曼方程求解器,求解基爾霍夫電壓方程、電子連續(xù)性方程,估算兩種電源分別作用下電流、平均電子密度和電子溫度、氣隙電壓、介質(zhì)表面電壓等等離子體特性參數(shù)隨時(shí)間的變化規(guī)律。得出的結(jié)論主要包括:使用可變電阻表示等離子體放電的過程,減少了開關(guān)函數(shù),可實(shí)現(xiàn)電子密度和電阻推算,有利于對(duì)電路進(jìn)行阻抗匹配,提高電源效率。正弦波交流源作用下的仿真發(fā)現(xiàn),給定電源條件下,平均電子密度和電子溫度最高可達(dá)1.01×1016m-3和6.1eV,電阻的最小值為0.5MΩ,容抗為8.99GΩ。電阻、容抗隨著電流密度的增大非線性減小,電子溫度略有增加。單極性納秒脈沖電源作用下,存在反向放電,電子溫度與電子密度分別為2.7×1018m-3和8.5eV,均高于正弦波電源作用的情況。電源斜率對(duì)放電有重要的影響,隨著電壓上升率增加,第一次放電的電流增大。放電時(shí)刻提前,但是對(duì)應(yīng)的第二次放電電流略有減小,下降率的增加則對(duì)應(yīng)著第二次放電電流幅值的增加,第一次放電的電流則略有減小。
[Abstract]:Surface Dielectric Barrier Discharge (SDBD) plasma generation technology can produce a large and uniform plasma layer on the dielectric surface because of its small discharge space constraints, simple structure and fast dynamic response, avoiding the generation of arcs, high power density and variety. Various active particles, such as ozone (O3), oxygen (O), hydrogen peroxide (H2O2), hydroxyl (OH) and their excited state particles, have been widely used in aerodynamics, biomedicine, environmental protection and other fields, and have been the research hotspot in recent years. In the exploratory stage, the factors affecting the discharge characteristics are not regularly understood. Therefore, it is of great theoretical and engineering significance to study the characteristics of dielectric barrier discharge along the surface with different parameters for promoting its application. Based on the physical process and experimental results of discharge, the equivalent circuit models of lumped parameters of plasma actuator under the action of sine wave alternating current power supply and nanosecond pulse power supply are established respectively. The experiments and circuit simulation are carried out. True, the study of atmospheric surface dielectric barrier discharge mainly includes the following contents: The basic characteristics of surface dielectric barrier discharge under the action of nanosecond pulse power supply are systematically studied, and the electrode symmetry, back electrode packaging and symmetrical electrode power supply under the action of different repetition frequency of nanosecond pulse power supply are further analyzed. The effects of wiring modes (HV-GND and GND-HV) on the voltage-ampere characteristics, deposition energy, transfer charge, N2 (C3nu_B3_g) and N2 + (B2_u +X2_g +, 0-0, 391.4 nm) spectral intensity, N2 (C3_u) oscillation temperature and rotation temperature of surface dielectric barrier discharge (DBD) were investigated. Compared with the asymmetrical exciter, the symmetrical exciter has a higher discharge starting time, higher current value, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotational temperature, and emission spectrum intensity. Because of the polarity effect, the discharge initiation time of HV-GND is later than that of GND-HV, but it has higher peak current, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotation temperature. The voltage-ampere characteristics, discharge power and transmission charge, N2 (C3_u_B3_g) and N2 + (B2_U+X2_g+, 0-0, 391.4 nm) spectral line strength, N2 (C3nu) oscillation temperature and rotational temperature were investigated under sinusoidal wave power supply. The main conclusions are as follows: compared with the plasma characteristics of SDBD under nanosecond pulse power supply, the rotational temperature of N2 (C3nu) corresponding to SDBD under sinusoidal wave is higher, but the vibrational temperature of N2 (C3nu) is lower, and the discharge current amplitude is much lower. Under the same conditions, the emission spectra of nanosecond pulsed discharge current are the same. The increase of frequency is beneficial to the enhancement of discharge. The electrode symmetry of the actuator under sinusoidal wave power supply is good. The influence of back electrode packaging on discharge parameters is consistent with that of nanosecond pulsed discharge power supply. The parameters of SDBD discharge plasma corresponding to GND-HV power supply have little change. Based on the experimental platform of dielectric barrier discharge along the surface under the action of sinusoidal wave power supply, the voltammetric characteristics, discharge image, emission spectrum characteristics, N2 (C3_u) vibration temperature and rotational temperature, as well as the excitation and sum of nitrogen molecule are studied. The spatial distributions of N2 (C3_u_B3_g, 0-0, 337.1 nm), N2 + (B2_u +X2_g+, 0-0, 391.4 nm:) and Ar I (2P1_1S2, 750.39 nm) emission line strength, N2 (C3_u) vibration temperature and rotation temperature are further analyzed. The results show that the discharge intensity and uniformity increase obviously after the introduction of argon, a stable large area discharge plasma is produced, and the rotational temperature of N2 (C3_u) increases, which is conducive to increasing momentum transfer efficiency and airflow induced velocity. The dynamic temperature is the strongest at the center and decreases with the decrease of the distance to the edge of the plate; the change of N2 (C3_u) vibration temperature is opposite to the rotational temperature. In addition, with the increase of argon flow rate, the discharge intensity increases first and then decreases, and the rotational temperature of N2 (C3_u) increases. With the increase of tube spacing, discharge decreases, emission spectrum intensity, discharge power, electron excitation temperature and N2 (C3_u) rotation temperature decrease significantly, but N2 (C3_u) vibration temperature increases; with the increase of voltage amplitude and frequency, spectral line intensity increases, N2 (C_u) vibration temperature increases. 3_u) rotational temperature, discharge power and electron excitation temperature increase, but the effect on N2 (C3_u) vibrational temperature is relatively small. Based on the physical process of discharge and experimental results, plasma ionization under the action of sinusoidal wave power supply and nanosecond pulse power supply is established respectively. The lumped parameter equivalent circuit model of the daughter exciter is used to estimate the plasma geometry size by taking high-speed discharge images. With the help of matlab/simulink software and simultaneous Boltzmann equation solver, Kirchhoff voltage equation and electron continuity equation are solved to estimate the current, average electron density and electron temperature under the action of two power sources respectively. The main conclusions are as follows: using variable resistance to represent the process of plasma discharge, reducing the switching function, realizing the calculation of electron density and resistance, facilitating the impedance matching of the circuit, improving the efficiency of power supply. The simulation results show that the maximum average electron density and temperature can reach 1.01 *1016m-3 and 6.1eV, the minimum resistance is 0.5M, the capacitance reactance is 8.99G. The capacitance reactance decreases nonlinearly with the increase of current density, and the electron temperature increases slightly. The electron temperature and electron density are 2.7 *1018m-3 and 8.5eV, respectively, which are higher than those of the sinusoidal power supply. The slope of the power supply has an important effect on the discharge. With the increase of the voltage rise rate, the current of the first discharge increases, the discharge time is advanced, but the corresponding second discharge current is slightly reduced, and the decrease rate increases correspondingly with the second discharge current. The current of the first discharge decreases slightly when the amplitude of secondary discharge current increases.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O461;O53

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 尹淑慧;;電暈放電與介質(zhì)阻擋放電等離子體簡(jiǎn)介[J];現(xiàn)代物理知識(shí);2006年02期

2 李鋼;李軼明;徐燕驥;張翼;李漢明;聶超群;朱俊強(qiáng);;介質(zhì)阻擋放電等離子體對(duì)近壁區(qū)流場(chǎng)的控制的實(shí)驗(yàn)研究[J];物理學(xué)報(bào);2009年06期

3 高樹香 ,陳文靜;混合氣體放電等離子體電子溫度的理論計(jì)算[J];電子器件;1987年01期

4 陳遠(yuǎn)喜;劉祖黎;;氣體放電等離子體參量診斷實(shí)驗(yàn)[J];物理實(shí)驗(yàn);1993年02期

5 李漢明;李英駿;毛靈濤;李鋼;張翼;劉峰;王芳;聶超群;李玉同;張杰;;絕緣阻擋放電等離子體弦向溫度分布研究[J];科技導(dǎo)報(bào);2007年18期

6 譚笑;盧佳敏;劉欣宇;楊勇;劉大偉;盧新培;;高電壓放電產(chǎn)生等離子體在人工降雨中的應(yīng)用[J];高電壓技術(shù);2012年12期

7 李勁,王澤文,高秋華,李勝利;放電等離子體水處理技術(shù)中的放電問題[J];高電壓技術(shù);1997年02期

8 程鈺鋒;聶萬勝;車學(xué)科;;臨近空間介質(zhì)阻擋放電等離子體氣動(dòng)激勵(lì)效果的數(shù)值分析[J];高電壓技術(shù);2011年06期

9 李軍;吳韋韋;宋慧敏;賈敏;金迪;;靜止空氣中重頻脈沖火花放電等離子體的氣動(dòng)激勵(lì)特性[J];高電壓技術(shù);2013年07期

10 盧新培,潘垣,張寒虹;水中脈沖放電等離子體通道特性及氣泡破裂過程[J];物理學(xué)報(bào);2002年08期

相關(guān)會(huì)議論文 前10條

1 趙書霞;王友年;;射頻感應(yīng)耦合放電等離子體模式跳變的混合模擬[A];第十四屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議暨第五屆中國(guó)電推進(jìn)技術(shù)學(xué)術(shù)研討會(huì)會(huì)議摘要集[C];2009年

2 宋春蓮;張芝濤;楊憲立;陳文艷;;放電等離子體轉(zhuǎn)化秸稈制取單糖的機(jī)理[A];中國(guó)物理學(xué)會(huì)第十五屆靜電學(xué)術(shù)年會(huì)論文集[C];2009年

3 閻克平;金華;;流光放電等離子體在環(huán)保方面的應(yīng)用[A];中國(guó)環(huán)境保護(hù)優(yōu)秀論文集(2005)(下冊(cè))[C];2005年

4 閆克平;;流光放電等離子體在環(huán)保方面的應(yīng)用[A];第十一屆全國(guó)電除塵學(xué)術(shù)會(huì)議論文集[C];2005年

5 劉睿強(qiáng);劉悅;Tagra Samir;劉倩;張向東;;低氣壓射頻和脈沖射頻氬氣放電等離子體的比較[A];第十六屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議暨第一屆全國(guó)等離子體醫(yī)學(xué)研討會(huì)會(huì)議摘要集[C];2013年

6 林啟富;倪國(guó)華;江貽滿;劉衛(wèi);孟月東;;一種新型介質(zhì)阻擋放電等離子體降解水中茜素紅的研究[A];第十六屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議暨第一屆全國(guó)等離子體醫(yī)學(xué)研討會(huì)會(huì)議摘要集[C];2013年

7 趙海洋;劉克富;;脈沖放電等離子體污水處理可行性實(shí)驗(yàn)研究[A];上海市照明學(xué)會(huì)成立30周年慶典暨四直轄市照明科技論壇、長(zhǎng)三角照明科技論壇、上海市照明學(xué)會(huì)2008年年會(huì)論文集[C];2008年

8 李傳輝;劉文正;孫光亮;張蓉蓉;;水表面介質(zhì)阻擋放電等離子體生成特性的研究[A];第十六屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議暨第一屆全國(guó)等離子體醫(yī)學(xué)研討會(huì)會(huì)議摘要集[C];2013年

9 蒲陸梅;李國(guó)琴;伏建明;虎玉森;;輝光放電等離子體對(duì)農(nóng)藥毒性的消除作用[A];甘肅省化學(xué)會(huì)第二十五屆年會(huì)、第七屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2007年

10 張宏;黃青;柯志剛;余增亮;;放電等離子體降解水體微囊藻毒素及其機(jī)理研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第2分會(huì)場(chǎng)摘要集[C];2012年

相關(guān)重要報(bào)紙文章 前2條

1 記者 汪永安;科學(xué)島發(fā)現(xiàn)藍(lán)藻治理新方法[N];安徽日?qǐng)?bào);2014年

2 王慧敏;復(fù)旦學(xué)子實(shí)踐創(chuàng)新點(diǎn)亮關(guān)注民生之燈[N];文匯報(bào);2008年

相關(guān)博士學(xué)位論文 前10條

1 張婧;甲烷和甲醇在介質(zhì)阻擋放電等離子體中的反應(yīng)[D];大連理工大學(xué);2015年

2 郝玲艷;大氣壓沿面介質(zhì)阻擋放電等離子體特性研究[D];山東大學(xué);2016年

3 薄拯;滑動(dòng)弧放電等離子體處理?yè)]發(fā)性有機(jī)化合物基礎(chǔ)研究[D];浙江大學(xué);2008年

4 呂曉桂;大體積均勻納秒脈沖放電等離子體及制備碳納米顆粒的研究[D];大連理工大學(xué);2011年

5 王鐵成;場(chǎng)地有機(jī)物污染土壤的脈沖放電等離子體修復(fù)方法和機(jī)理研究[D];大連理工大學(xué);2013年

6 王慧娟;脈沖放電等離子體—流光光催化協(xié)同降解水中典型有機(jī)污染物[D];大連理工大學(xué);2007年

7 姜楠;沿面—填充床復(fù)合放電等離子體及其協(xié)同催化降解苯的研究[D];大連理工大學(xué);2014年

8 杜長(zhǎng)明;滑動(dòng)弧放電等離子體降解氣相及液相中有機(jī)污染物的研究[D];浙江大學(xué);2006年

9 王達(dá)望;新型大氣壓放電等離子體發(fā)生器及其在甲烷偶聯(lián)方面的應(yīng)用研究[D];大連理工大學(xué);2006年

10 王蕾;輝光放電等離子體降解水中有機(jī)污染物與還原六價(jià)鉻的研究[D];浙江大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 施志勇;脈沖放電等離子體協(xié)同復(fù)合型催化劑去除甲醛的研究[D];江西理工大學(xué);2015年

2 王兆均;脈沖介質(zhì)阻擋放電等離子體處理廢水的研究[D];復(fù)旦大學(xué);2013年

3 廖華;基于介質(zhì)阻擋放電等離子體水處理機(jī)理及樣機(jī)研究[D];重慶大學(xué);2015年

4 榮少鵬;濕壁式介質(zhì)阻擋放電等離子體對(duì)水中磺胺嘧啶的去除研究[D];南京大學(xué);2014年

5 郭賀;脈沖放電等離子體—活性炭聯(lián)合降解水體中有機(jī)污染物的研究[D];江蘇大學(xué);2016年

6 黃宏偉;C_2F_6、C_4F_8雙頻電容耦合等離子體特性研究[D];蘇州大學(xué);2010年

7 楊水蛟;氣體放電等離子體在模擬廢水降解中的應(yīng)用研究[D];西北大學(xué);2012年

8 文鳳;大氣壓介質(zhì)質(zhì)阻擋放電等離子體處理印染廢水的研究[D];東華大學(xué);2013年

9 孟諾;沿面—填充床復(fù)合放電等離子體催化降解苯[D];大連理工大學(xué);2010年

10 阮建軍;脈沖放電等離子體治理惡臭廢氣技術(shù)研究[D];浙江大學(xué);2005年

,

本文編號(hào):2199725

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2199725.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d18bf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com