天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

日冕磁繩的災(zāi)變及相關(guān)現(xiàn)象研究

發(fā)布時(shí)間:2018-08-08 13:59
【摘要】:太陽(yáng)大尺度爆發(fā)活動(dòng)是日地空間活動(dòng)的主要擾動(dòng)源,主要包括日珥(暗條)爆發(fā)、耀斑和日冕物質(zhì)拋射等現(xiàn)象。這些爆發(fā)活動(dòng)彼此之間并非獨(dú)立,它們通常被認(rèn)為是同一個(gè)日冕磁繩爆發(fā)活動(dòng)在不同的時(shí)間范圍和空間區(qū)域內(nèi)的具體表現(xiàn)形式。研究日冕磁繩爆發(fā)的現(xiàn)象和機(jī)制,對(duì)于理解這些爆發(fā)現(xiàn)象的物理過(guò)程,促進(jìn)空間天氣預(yù)報(bào)的發(fā)展有重要意義。本文主要研究的是日冕磁繩爆發(fā)的災(zāi)變驅(qū)動(dòng)機(jī)制,以及與之相關(guān)的觀測(cè)現(xiàn)象的分析。首先,我們利用數(shù)值模擬的方法,研究了日冕磁繩系統(tǒng)的災(zāi)變特性,包括不同光球?qū)哟磐ǚ植枷孪到y(tǒng)災(zāi)變演化特性的差異,以及日冕磁繩系統(tǒng)中存在的不同類型的災(zāi)變現(xiàn)象等等;然后,我們研究了衛(wèi)星觀測(cè)到的一個(gè)典型的太陽(yáng)爆發(fā)活動(dòng)事件,分析了其中的動(dòng)力學(xué)演化過(guò)程,以及爆發(fā)活動(dòng)的驅(qū)動(dòng)機(jī)制,并在此基礎(chǔ)上,與數(shù)值模擬中的得到的磁繩的災(zāi)變演化特性進(jìn)行對(duì)比分析,從而對(duì)這個(gè)爆發(fā)活動(dòng)的演化過(guò)程給出一個(gè)系統(tǒng)完整的描述;此外,我們還研究了太陽(yáng)爆發(fā)活動(dòng)所驅(qū)動(dòng)的波和振動(dòng)現(xiàn)象,利用振動(dòng)參數(shù),估算局地物理參數(shù)并分析波的相關(guān)物理性質(zhì)。1.日冕磁繩系統(tǒng)的災(zāi)變特性在現(xiàn)有的觀測(cè)條件下,日冕中的磁場(chǎng)位形無(wú)法直接測(cè)量,只有光球?qū)拥拇磐ǚ植伎梢灾苯佑^測(cè)到。因此我們嘗試?yán)脭?shù)值模擬,研究光球?qū)哟艌?chǎng)條件與日冕磁繩系統(tǒng)災(zāi)變特性之間的關(guān)系,以期能夠?yàn)樘?yáng)爆發(fā)活動(dòng)的預(yù)報(bào)工作給出理論上的依據(jù)。通過(guò)計(jì)算發(fā)現(xiàn),系統(tǒng)的向上災(zāi)變特性與光球?qū)哟磐ǚ植加兄芮械穆?lián)系:如果光球?qū)踊顒?dòng)區(qū)的正負(fù)極性靠得過(guò)近,或是正負(fù)極性對(duì)應(yīng)的源區(qū)過(guò)弱,都會(huì)造成磁繩系統(tǒng)中不會(huì)發(fā)生向上災(zāi)變,即在這種光球?qū)哟磐ǚ植枷?磁繩系統(tǒng)不會(huì)爆發(fā)。我們對(duì)部分開放場(chǎng)和全閉合背景場(chǎng)的情況都進(jìn)行了計(jì)算分析,發(fā)現(xiàn)磁繩系統(tǒng)均滿足類似的結(jié)論,這表明背景場(chǎng)的開放性不是決定系統(tǒng)是否存在災(zāi)變的唯一因素,任何會(huì)改變背景場(chǎng)位形的參數(shù)都有可能影響系統(tǒng)的災(zāi)變特性。同時(shí),通過(guò)詳細(xì)分析有災(zāi)變的情況,我們還發(fā)現(xiàn)災(zāi)變演化過(guò)程的激烈程度同樣受光球?qū)哟艌?chǎng)條件的影響:正負(fù)極性距離越大,源區(qū)越強(qiáng),系統(tǒng)的演化過(guò)程越激烈,即磁繩系統(tǒng)的活動(dòng)性越強(qiáng)。在以往的研究中,分析的都是向上災(zāi)變的演化過(guò)程。通過(guò)數(shù)值模擬計(jì)算,我們發(fā)現(xiàn),除了以往被廣泛研究的向上災(zāi)變以外,日冕磁繩系統(tǒng)中還存在一個(gè)磁繩向下運(yùn)動(dòng)的災(zāi)變,被稱為向下災(zāi)變。向下災(zāi)變的過(guò)程中,即使系統(tǒng)中不存在磁場(chǎng)重聯(lián),磁能同樣會(huì)被釋放。在這種情況下,系統(tǒng)主要通過(guò)洛倫茲力的做功來(lái)釋放磁能,且其量級(jí)與太陽(yáng)爆發(fā)事件釋放能量的典型值相當(dāng)。因此,洛倫茲力在災(zāi)變中起到了重要的作用。在此基礎(chǔ)上,我們進(jìn)一步研究了光球?qū)哟磐ǚ植紝?duì)向下災(zāi)變的影響,結(jié)果發(fā)現(xiàn)了類似的結(jié)果..只有當(dāng)磁通分布滿足特定條件,系統(tǒng)中才會(huì)發(fā)生向下災(zāi)變。值得注意的是,在研究中發(fā)現(xiàn),向上災(zāi)變和向下災(zāi)變總是伴隨出現(xiàn),即系統(tǒng)存在向上災(zāi)變或是向下災(zāi)變時(shí),需要滿足光球?qū)哟磐ǚ植枷嗤?.通量注入過(guò)程引起爆發(fā)活動(dòng)現(xiàn)象的觀測(cè)分析通過(guò)對(duì)一個(gè)爆發(fā)日珥事件的觀測(cè)分析,我們發(fā)現(xiàn)在日珥爆發(fā)之前的兩天時(shí)間內(nèi),發(fā)生了至少三次通量注入過(guò)程:來(lái)自色球?qū)拥睦w維狀物質(zhì)上浮,與上方的日珥相互作用并最終融合在一起。這種通量注入過(guò)程會(huì)通過(guò)色球纖維結(jié)構(gòu)向日珥中注入磁通量,從而引起日珥緩慢抬升速度的明顯增加,并最終爆發(fā)形成日冕物質(zhì)拋射。通過(guò)分析外部磁場(chǎng)隨高度的衰減,我們發(fā)現(xiàn)正是由于通量注入過(guò)程,使得日珥上升到外部磁場(chǎng)衰減足夠快的高度,于是系統(tǒng)發(fā)生了 torus不穩(wěn)定性從而導(dǎo)致了日珥的爆發(fā)。因此,通量注入過(guò)程就是這個(gè)日珥爆發(fā)事件的驅(qū)動(dòng)原因。通過(guò)與數(shù)值模擬中得到的日冕磁繩系統(tǒng)災(zāi)變演化特性的對(duì)比分析,我們發(fā)現(xiàn),正是通量注入過(guò)程不斷的將磁通量注入了日珥所在的磁繩系統(tǒng),使得系統(tǒng)逐漸演化到所對(duì)應(yīng)的災(zāi)變點(diǎn),于是系統(tǒng)失衡產(chǎn)生災(zāi)變。由于災(zāi)變點(diǎn)恰好就是torus不穩(wěn)定性發(fā)生的臨界狀態(tài),因此災(zāi)變的具體演化過(guò)程表現(xiàn)為torus不穩(wěn)定性。3.太陽(yáng)爆發(fā)活動(dòng)產(chǎn)生的波和振動(dòng)現(xiàn)象的分析太陽(yáng)的爆發(fā)活動(dòng)還會(huì)引起許多其他的觀測(cè)現(xiàn)象。我們研究了一個(gè)大尺度EUV波事件,它是由一個(gè)耀斑產(chǎn)生的日冕物質(zhì)拋射所驅(qū)動(dòng)的。EUV波在傳播的過(guò)程中,與傳播路徑上的冕環(huán)和日珥相互作用,驅(qū)動(dòng)冕環(huán)和日珥開始振動(dòng)。通過(guò)分析觀測(cè)數(shù)據(jù),我們得到了冕環(huán)和日珥的相關(guān)物理參數(shù)。利用這些參數(shù),我們估算了太陽(yáng)表面振動(dòng)結(jié)構(gòu)所處區(qū)域的局地物理參數(shù)。同時(shí),結(jié)合冕環(huán)和日珥的空間位置信息,我們還估算了 EUV波的傳播高度以及波的總能量。
[Abstract]:The solar large-scale eruption is the main disturbance source of the solar terrestrial space activities, mainly including the eruptions of prominence (dark strips), flares and coronal mass ejections. These eruptions are not independent of each other. They are usually considered to be the specific manifestations of the same coronal magnetic rope eruption in the different time range and space area. The study of the phenomenon and mechanism of the coronal magnetic rope burst is of great significance for understanding the physical process of these eruptions and promoting the development of the space weather forecast. This paper mainly deals with the catastrophic driving mechanism of the coronal magnetic rope burst and the analysis of the observed phenomena related to it. First, we have studied the method of numerical simulation. The catastrophic characteristics of the coronal magnetic rope system include the difference in the characteristics of the system catastrophe and the different types of catastrophic phenomena in the coronal magnetic rope system, as well as the different types of catastrophes in the coronal magnetic rope system, and so on. Then, we have studied a typical solar explosion event observed by the satellite, and analyzed its dynamic evolution process. And on this basis, and on this basis, compared with the characteristics of the catastrophic evolution of the magnetic cord in the numerical simulation, a systematic and complete description of the evolution process of the eruption activity is given. In addition, we also study the wave and vibration phenomena driven by the solar explosion, and use the vibration parameters to estimate. The local physical parameters and the analysis of the related physical properties of the wave.1. coronal magnetic rope system, the characteristics of the coronal magnetic rope system can not be measured directly in the current corona, only the magnetic flux distribution in the sphere can be observed directly. Therefore, we try to use the numerical simulation to study the magnetic field conditions of the sphere and the coronal magnetic rope system. The relationship between the characteristics of the catastrophe is expected to provide a theoretical basis for the prediction of the solar eruption. It is found that the upward catastrophic characteristics of the system are closely related to the flux distribution of the photosphere: if the positive and negative polarity of the sphere of the sphere is too close, or the source area corresponding to the positive and negative polarity is too weak, it will all be caused. There will not be an upward catastrophe in the magnetic rope system, that is, the magnetic rope system will not break out under the flux distribution of the sphere layer. We have calculated and analyzed the conditions of the partial open field and the fully closed background field. It is found that the magnetic rope system satisfies the similar conclusion, which indicates that the opening of the background field is not the only one to determine whether the system has a catastrophe or not. At the same time, we also find that the severity of the catastrophic process is also affected by the magnetic field conditions of the photosphere: the greater the distance between the positive and negative polarity, the stronger the source area, the more intense the evolution of the system, the magnetic rope system. The more active the system is. In previous studies, the analysis is the evolutionary process of the upward catastrophe. Through numerical simulation, we find that there is a magnetic rope downward movement in the coronal rope system besides the previously widely studied upward catastrophes, which is called downward catastrophe. In the process of downward catastrophe, even the system is in the process. There is no magnetic reconnection, and the magnetic energy is also released. In this case, the system releases the magnetic energy mainly through the work of the Lorenz force, and its magnitude is equivalent to the typical value of the energy released by the solar eruption event. Therefore, Lorenz force plays an important role in the catastrophe. On this basis, we further study the magnetic flux of the photosphere. The effect of distribution on the downward catastrophe has been found. The downward catastrophe occurs only when the flux distribution satisfies specific conditions. It is noted that in the study, it is found that the upward and downward catastrophes always accompany the system, that is, the system needs to meet the flux of the photosphere when there is a catastrophic or downward catastrophe. Observation and analysis of the phenomenon of explosive activity caused by the same.2. flux injection process, we found that at least three times of flux injection process in two days before the prominence eruption: the fibrous material from the chromosphere layer, interacting with the prominence above and finally fusion. Together, the flux injection process will inject magnetic flux into the solar prominence through the structure of the chromosphere, causing a significant increase in the slow lifting speed of the prominence and eventually forming a coronal mass ejection. By analyzing the attenuation of the external magnetic field with the height, we find that the prominence is rising to the external magnetic flux because of the flux injection process. The field attenuates a high enough height, so the system has torus instability which leads to the eruption of the prominence. Therefore, the flux injection process is the driving cause of the event of the prominence. By the comparison of the catastrophic characteristics of the coronal cord system obtained in the numerical simulation, we find that it is the flux injection process. The magnetic flux is injected into the magnetic rope system where the prominence is located, so that the system gradually evolves to the corresponding catastrophe, so the system imbalance produces the catastrophe. Because the catastrophic point is the critical state of the torus instability, the concrete evolution of the catastrophe is manifested by the waves and vibrations produced by the torus instability.3. solar explosion. The phenomenal analysis of the solar explosion will also cause many other observational phenomena. We have studied a large scale EUV wave event, which is a.EUV wave driven by a coronal mass ejection produced by a flare, interacting with the coronal rings and prominences on the propagation path, driving the vibration of the coronal rings and prominences. By analyzing the observation data, we get the physical parameters of the coronal ring and prominence. By using these parameters, we estimate the local physical parameters in the region of the vibration structure of the solar surface. At the same time, we also estimate the propagation height of the EUV wave and the total energy of the wave in conjunction with the spatial position information of the coronal ring and the prominence.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P182.62

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡文瑞;日冕環(huán)和日冕拱的平衡位形[J];空間科學(xué)學(xué)報(bào);1982年01期

2 葉占銀,魏奉思,王赤,羅慶宇,馮學(xué)尚;扭轉(zhuǎn)Alfvén波共振的數(shù)學(xué)描述[J];空間科學(xué)學(xué)報(bào);2003年04期

3 譚寶林;黃光力;;冕環(huán)電流的成因分析[J];天文研究與技術(shù).國(guó)家天文臺(tái)臺(tái)刊;2006年02期

4 張真;何馨;梁紅飛;;冕環(huán)振蕩的物理特征研究[J];天文學(xué)報(bào);2013年01期

5 劉新萍;太陽(yáng)日冕環(huán)的運(yùn)動(dòng)(Ⅰ)、(Ⅱ)[J];云南天文臺(tái)臺(tái)刊;1981年Z1期

6 劉新萍;太陽(yáng)日冕環(huán)的運(yùn)動(dòng)[J];Chinese Journal of Astronomy and Astrophysics;1982年03期

7 劉新萍;太陽(yáng)日冕環(huán)的運(yùn)動(dòng)(二)[J];Chinese Journal of Astronomy and Astrophysics;1983年01期

8 章振大;R.N.Smartt;;冕環(huán)的相互作用[J];天文學(xué)報(bào);1991年03期

9 封莉,甘為群;太陽(yáng)活動(dòng)區(qū)冕環(huán)若干研究進(jìn)展[J];天文學(xué)進(jìn)展;2005年03期

10 李海東;趙麗;梁紅飛;畢以;洪俊超;鄭瑞生;;慢磁聲波在黑子上方冕環(huán)中的傳播[J];天文學(xué)報(bào);2013年01期

相關(guān)會(huì)議論文 前1條

1 宋文彬;;不同螺度冕環(huán)相互作用引發(fā)的太陽(yáng)爆發(fā)事件[A];中國(guó)地球物理學(xué)會(huì)第二十四屆年會(huì)論文集[C];2008年

相關(guān)博士學(xué)位論文 前2條

1 張全浩;日冕磁繩的災(zāi)變及相關(guān)現(xiàn)象研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年

2 羅慶宇;太陽(yáng)日冕波動(dòng)加熱機(jī)制研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2003年

相關(guān)碩士學(xué)位論文 前2條

1 歐陽(yáng)文輝;激波及其擾動(dòng)引起的冕拱振動(dòng)頻率研究[D];云南師范大學(xué);2015年

2 趙燕;基于相位一致性和方向?yàn)V波的冕環(huán)特征識(shí)別方法[D];昆明理工大學(xué);2016年



本文編號(hào):2172007

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2172007.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0e761***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com