天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

蓖麻胚乳表觀調(diào)控與基因組印跡研究

發(fā)布時(shí)間:2018-07-17 20:03
【摘要】:植物胚乳發(fā)育的研究一直是植物生殖發(fā)育,表觀遺傳學(xué)和作物遺傳育種關(guān)注的熱點(diǎn)領(lǐng)域和重要科學(xué)前沿。DNA甲基化是一種非常重要的表觀修飾因子,參與異染色質(zhì)的形成,轉(zhuǎn)座子的沉默,基因表達(dá)的調(diào)控以及基因組印跡的發(fā)生。越來(lái)越多的證據(jù)顯示DNA甲基化和基因組印跡對(duì)胚乳發(fā)育和種子大小形成具有重要的調(diào)控作用。目前已經(jīng)在模式植物如擬南芥、水稻和玉米的種子中調(diào)查了DNA甲基化的水平和分布,揭示出胚乳基因組的低甲基化狀態(tài)。但是,關(guān)于胚乳基因組的低甲基化狀態(tài)是如何建立和維持的,是否具有廣泛性以及它在胚乳發(fā)育過(guò)程中的作用,目前還不是很清楚。特別是對(duì)于大多數(shù)真雙子葉植物包括擬南芥,胚乳組織是瞬時(shí)的,隨著種子的發(fā)育逐漸消失,因此在真雙子葉植物種子中研究胚乳DNA甲基化的調(diào)控方式以及DNA甲基化對(duì)胚乳發(fā)育和基因組印跡的調(diào)控受到了很大的限制。蓖麻種子是典型的雙子葉胚乳型種子,胚乳在整個(gè)種子發(fā)育過(guò)程中持續(xù)存在,具有大的體積且易于分離,是種子生物學(xué)研究的模式材料。蓖麻為深入研究表觀調(diào)控因子對(duì)胚乳發(fā)育的影響提供了理想的研究系統(tǒng)。本研究以蓖麻品系ZB107的種子為研究材料,結(jié)合全基因組DNA甲基化測(cè)序、small RNA測(cè)序、mRNA測(cè)序以及實(shí)驗(yàn)驗(yàn)證,全面分析了DNA甲基化的分布規(guī)律、調(diào)控方式和對(duì)基因表達(dá)的影響。主要結(jié)果如下:1.蓖麻胚乳基因組的低甲基化通過(guò)全基因組DNA甲基化測(cè)序,我們發(fā)現(xiàn)蓖麻胚乳基因組中CG和CHG甲基化水平分別為30.3%和18.3%,明顯低于胚基因組中CG(40.7%)和CHG(24%)的甲基化水平,與擬南芥、玉米和水稻中的報(bào)道一致。但是蓖麻胚乳CHH甲基化水平(11.2%)相對(duì)于胚(12.7%)并沒(méi)有發(fā)生顯著下降。在檢測(cè)的所有甲基化位點(diǎn)中,CHH甲基化類型占了大約68%。在蓖麻種子中絕大部分CG和CHG的甲基化水平維持在90%以上,而CHH的甲基化水平平均分布在30%-100%。而且胚乳基因組廣泛的去甲基化作用導(dǎo)致了胚乳和胚間差異甲基化的形成。2.DNA甲基化的分布規(guī)律以及對(duì)基因表達(dá)的影響通過(guò)調(diào)查DNA甲基化在基因區(qū)域和轉(zhuǎn)座子區(qū)域的分布,我們發(fā)現(xiàn)CG甲基化在整個(gè)基因組都有分布,而CHG和CHH甲基化在基因區(qū)很少分布,絕大部分分布在轉(zhuǎn)座子區(qū)域。在基因區(qū)和轉(zhuǎn)座子區(qū),胚乳的DNA甲基化水平均明顯低于胚。通過(guò)分析DNA甲基化與基因表達(dá)的關(guān)系,我們發(fā)現(xiàn)不同表達(dá)程度基因的DNA甲基化水平并沒(méi)有發(fā)生明顯的改變,而不表達(dá)的基因(RPKM≤1)的DNA甲基化水平最高,表明DNA甲基化的主要作用是抑制基因的表達(dá)。而對(duì)于胚乳特異表達(dá)的基因,DNA甲基化水平,特別是CG和CHG甲基化,在胚乳中發(fā)生了明顯的下降,表明CG和CHG的低甲基化對(duì)胚乳特異表達(dá)基因的調(diào)控作用。3.24-siRNAs對(duì)DNA甲基化的調(diào)控為了進(jìn)一步解析蓖麻種子中高比例的CHH甲基化,我們調(diào)查了蓖麻胚乳和胚中small RNA以及與DNA甲基化的關(guān)系。small RNA測(cè)序結(jié)果顯示,蓖麻種子中包含豐富的24-nt small RNA,且這些24-nt siRNAs與基因組CHG和CHH甲基化的分布和水平顯著相關(guān)。在胚基因組中,基因區(qū)和TE區(qū)24-nt siRNAs的豐度明顯高于胚乳,且在胚和胚乳中,24-nt siRNAs很少在基因上分布,與CHG和CHH甲基化在基因區(qū)的分布一致。另外,我們發(fā)現(xiàn)24-nt siRNAs顯著地富集在CHH的高甲基化區(qū)域;而在CHH低甲基化區(qū)域24-nt siRNAs的豐度發(fā)生了明顯的下降,這些結(jié)果表明蓖麻種子中24-nt siRNAs參與了基因組CHH甲基化的維持。4.蓖麻種子DNA甲基化調(diào)控方式為了揭示蓖麻種子中DNA甲基化分布的潛在機(jī)制,我們調(diào)查了DNA甲基化相關(guān)基因在不同組織中的表達(dá)。結(jié)果表明,相對(duì)于胚組織,DNA甲基轉(zhuǎn)移酶基因RcMET1和RcCMT在胚乳中的表達(dá)明顯下降,而且DNA去甲基化酶基因RcDME在胚乳中也表達(dá),共同導(dǎo)致了胚乳CG和CHG甲基化水平的下降;而DNA甲基化酶基因RcDRM3在胚乳中的表達(dá)并沒(méi)有受到抑制。同時(shí),在蓖麻胚和胚乳中豐富的24-siRNAs以及RdDM途徑的激活維持了蓖麻種子基因組高比例的CHH甲基化。基因組印跡是一種典型的表觀遺傳學(xué)現(xiàn)象,主要發(fā)生在開(kāi)花植物的胚乳中,與胚乳和種子的發(fā)育密切相關(guān)。在本研究中,我們以蓖麻品系ZB107和ZB306為親本進(jìn)行互交,對(duì)獲得的雜交胚乳組織進(jìn)行了深度mRNA測(cè)序和等位基因分‘離分析,調(diào)查和特征化了蓖麻胚乳中的印跡基因。主要結(jié)果如下:1.在蓖麻胚乳中鑒別到大量印跡基因通過(guò)全基因組重測(cè)序,我們?cè)谟H本ZB107和ZB306品系間鑒別了1007066個(gè)SNPs和100615個(gè)indels。結(jié)合這些SNPs和嚴(yán)格的篩選,我們?cè)诒吐榕呷橹需b別到184個(gè)母源印跡基因(maternally imprinted genes,MEGs)和9個(gè)父源印跡基因(paternally imprinted genes,PEGs)。在挑選的67個(gè)印跡基因中,57個(gè)得到了實(shí)驗(yàn)驗(yàn)證,有5個(gè)基因表現(xiàn)出品系依賴性印跡。在胚乳的不同發(fā)育階段,我們發(fā)現(xiàn)這些基因表現(xiàn)出動(dòng)態(tài)的印跡過(guò)程。另外,我們也鑒別到14個(gè)印跡的long non-coding RNAs,并得到了實(shí)驗(yàn)驗(yàn)證。在這些驗(yàn)證的印跡基因中,僅39%的基因在胚乳中特異表達(dá),大部分基因在蓖麻各個(gè)組織中均有表達(dá)。2.印跡基因的特征化通過(guò)印跡基因的聚類分析,發(fā)現(xiàn)僅有少量印跡位點(diǎn)在基因組中發(fā)生了明顯的聚類。GO功能富集分析顯示出這些印跡基因顯著地參與了胚乳的發(fā)育過(guò)程。另外,我們發(fā)現(xiàn)TE顯著地富集在這些印跡基因的周圍(上下游4 kb范圍內(nèi)),特別是LTR/Gypsy TE類型。通過(guò)比較擬南芥、水稻、玉米和蓖麻中的印跡基因,發(fā)現(xiàn)印跡基因在物種間的保守性比較低,說(shuō)明印跡基因在物種間發(fā)生了獨(dú)立分化,有較快的進(jìn)化速率。3.DNA甲基化對(duì)印跡基因表達(dá)的調(diào)控通過(guò)對(duì)雜交胚和胚乳基因組DNA甲基化測(cè)序,我們發(fā)現(xiàn)胚乳的低甲基化區(qū)域顯著地富集在印跡基因周圍(上下游2 kb范圍內(nèi)),且這些低甲基化區(qū)域主要發(fā)生在LTR/Gypsy TE上,表明了TE的去甲基化過(guò)程對(duì)印跡基因表達(dá)的影響。另外,我們檢測(cè)到6個(gè)MEGs的母源等位基因甲基化水平明顯低于其父源等位基因,表明等位基因甲基化水平的差異對(duì)印跡基因的表達(dá)調(diào)控作用。
[Abstract]:The research of plant endosperm development has always been plant reproductive development. Epigenetics and crop genetics and breeding focus on the hot areas and important scientific frontiers.DNA methylation is a very important apparent modifier. It participates in the formation of heterochromatin, transposon silence, gene expression regulation and the occurrence of genomic imprinting. Many evidence shows that DNA methylation and genomic imprinting have important regulatory effects on the development of endosperm and the formation of seed size. The level and distribution of DNA methylation in the seeds of model plants, such as Arabidopsis, rice and corn, have been investigated, and the low methylation status of the endosperm genome is revealed. However, the low endosperm genome is low. How the methylation state is established and maintained, whether it is extensive and its role in the development of the endosperm, is not yet clear. Especially for most of the true dicotyledonous plants, including Arabidopsis, endosperm tissue is instantaneous, with the gradual loss of seed development, so the endosperm DN is studied in the seeds of true dicotyledonous plants. The regulation of A methylation and the regulation of DNA methylation on the development of endosperm and genomic imprinting are greatly restricted. The castor seed is a typical dicotyledonous endosperm seed. The endosperm persists in the whole process of seed development. It has large volume and is easy to separate. It is a model material for seed biological research. The effects of apparent regulatory factors on the endosperm development provided an ideal research system. This study used the seeds of ZB107 of Ricinus ricinus as the research material, combined with the whole genome DNA methylation sequencing, small RNA sequencing, mRNA sequencing and experimental verification, to comprehensively analyze the distribution of DNA methylation, the mode of regulation and the effect on the gene expression. The main results are as follows: 1. the methylation of the genomes of the castor plant endosperm through full genome DNA methylation sequencing, we found that the level of CG and CHG methylation in the endosperm genome of castor bean was 30.3% and 18.3%, respectively, significantly lower than the level of methylation of CG (40.7%) and CHG (24%) in the embryo genome, but it was consistent with the reports in Arabidopsis, corn and rice. The level of CHH methylation (11.2%) of the castor endosperm (12.7%) did not decrease significantly. In all the methylation sites, the CHH methylation type accounted for about 68%. over 90% of the methylation level of CG and CHG in Castor seeds, while the methylation level of CHH was distributed evenly in 30%-100%. and in the endosperm genome. Extensive demethylation leads to the distribution of.2.DNA methylation of differentially methylation in the endosperm and embryo, and the effect on gene expression by investigating the distribution of DNA methylation in the region of the gene and the transposon region. We found that CG methylation is distributed throughout the genome, while CHG and CHH methylation is rarely divided in the gene region. Most of the DNA methylation levels of the endosperm in the gene and transposon areas were significantly lower than those of the embryo. By analyzing the relationship between DNA methylation and gene expression, we found that the level of DNA methylation of different expression levels did not occur obviously, but the DNA methylation of the non expressed gene (RPKM < 1) The main function of DNA methylation is to inhibit the expression of gene, and for the gene of endosperm specific expression, the level of DNA methylation, especially CG and CHG methylation, is obviously decreased in the endosperm, indicating the regulation of CG and CHG low methylation on the specific expression of endosperm, the regulation of.3.24-siRNAs on DNA methylation In order to further analyze the high proportion of CHH methylation in Castor seeds, we investigated the relationship between the endosperm and small RNA in the embryo and the relationship with DNA methylation by.Small RNA sequencing results showed that the rich 24-nt small RNA contained in the Castor seeds, and these 24-nt siRNAs were significantly related to the distribution and level of genomic CHG and methylation. In the genome, the abundance of 24-nt siRNAs in the gene region and the TE region is significantly higher than that in the endosperm, and in the embryo and endosperm, the 24-nt siRNAs is rarely distributed in the gene, which is consistent with the distribution of CHG and CHH methylation in the gene region. In addition, we found that 24-nt siRNAs is significantly enriched in the high methylation region of CHH, while the CHH methylation region is abundant in the abundance of 24-nt. The results showed that the degree of 24-nt siRNAs in castor seed was involved in the DNA methylation of.4. Castor Seeds by genomic CHH methylation in order to reveal the potential mechanism of DNA methylation distribution in Castor seeds. We investigated the expression of DNA methylation related genes in different tissues. The results showed that the expression of DNA methylation related genes in different tissues was relative. The expression of DNA methyltransferase gene RcMET1 and RcCMT decreased in the endosperm, and the DNA demethylation gene RcDME was also expressed in the endosperm, which resulted in the decrease in the level of CG and CHG methylation in the endosperm, while the expression of the DNA methylation gene RcDRM3 in the endosperm was not suppressed. The activation of the rich 24-siRNAs and RdDM pathway maintains the high proportion of CHH methylation in the castor seed genome. Genomic imprinting is a typical epigenetic phenomenon, mainly occurring in the endosperm of flowering plants, closely related to the development of the endosperm and seeds. In this study, we use the castor strain ZB107 and ZB306 as parents. Cross intercross, deep mRNA sequencing and allele segregation analysis were carried out to investigate and characterize the imprinting genes in the endosperm of castor bean. The main results were as follows: 1. in the castor endosperm, a large number of imprinted genes were identified by whole genome re sequencing, and 1007066 of our parents were identified between the parent ZB107 and ZB306 lines. Combining these SNPs and 100615 indels. with these SNPs and strict screening, we identified 184 parent imprinting genes (maternally imprinted genes, MEGs) and 9 parent source imprinted genes (paternally imprinted genes, PEGs) in the castor endosperm. 57 of the 67 imprinted genes selected were tested with 5 gene expression lines. In the different stages of endosperm, we found that these genes showed a dynamic imprinting process. In addition, we also identified 14 imprinted long non-coding RNAs, which were verified by experiments. In these imprinted genes, only 39% of the genes were specifically expressed in the endosperm, and most of the genes were in the various tissues of castor. The.2. imprinting gene was characterized by the clustering analysis of the imprinted gene. It was found that only a small number of imprinted loci had a distinct clustering.GO enrichment analysis in the genome, which showed that these imprinted genes were significantly involved in the development of the endosperm. In addition, we found that TE was significantly enriched around these imprinted genes. (4 kb in the upper and lower reaches), especially the LTR/Gypsy TE type. By comparing the imprinted genes in Arabidopsis, rice, corn and castor, it is found that the conservatism of imprinted genes is relatively low among species, indicating that the imprinted gene has been independently differentiated in the species, and the rapid evolution rate of.3.DNA methylation regulates the expression of imprinted genes through the regulation DNA methylation sequencing of the hybrid embryo and endosperm genome, we found that the hypomethylation region of the endosperm is significantly enriched around the imprinted gene (2 kb in the upper and lower reaches), and these low methylation regions mainly occur on LTR/Gypsy TE, indicating the effect of TE demethylation on the expression of imprinted genes. In addition, we detected 6 MEGs The methylation level of maternal allele was significantly lower than that of its parent allele, indicating that the difference of allele methylation level played an important role in regulating the expression of imprinted genes.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:Q943.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 沈文潔,孔令紅,陳士嶺,李紅,邢福祺;五個(gè)抑癌印跡基因在人類卵子及種植前胚胎的表達(dá)[J];生殖與避孕;2005年04期

2 朱新產(chǎn),王寶維,郝言芝;基因組印跡機(jī)制[J];自然雜志;2001年06期

3 張文偉,曹少先,江玲,朱速松,萬(wàn)建民;基因組印跡與種子發(fā)育[J];遺傳;2005年04期

4 張麗更;楊若飛;付鳳玲;李晚忱;;植物印跡基因研究進(jìn)展[J];遺傳;2010年12期

5 李宏軍,郭應(yīng)祿,張志文;印跡基因及其對(duì)胚胎發(fā)育的調(diào)控[J];生物化學(xué)與生物物理進(jìn)展;1999年01期

6 楊榮榮;周榮艷;高淑敏;溫曉輝;李相運(yùn);;ES小鼠和ES細(xì)胞中H19基因甲基化狀態(tài)[J];遺傳;2008年06期

7 王建春;吳國(guó)江;李世杰;;哺乳動(dòng)物基因組印跡研究進(jìn)展[J];中國(guó)畜牧獸醫(yī);2008年09期

8 余升紅;基因組印跡調(diào)節(jié)[J];生物技術(shù);2005年03期

9 謝明星,宣華,趙國(guó)屏,孔祥銀;小鼠新的印跡基因MPI的克隆及其特征[J];中國(guó)預(yù)防獸醫(yī)學(xué)報(bào);2000年S1期

10 楊玉華,何小兵;印跡基因IGF2和H19的研究進(jìn)展[J];國(guó)外醫(yī)學(xué)(分子生物學(xué)分冊(cè));2002年04期

相關(guān)會(huì)議論文 前4條

1 趙丹;俞麗麗;李力;;印跡基因H19在早孕絨毛組織中印跡狀態(tài)的初步研究[A];全國(guó)圍產(chǎn)醫(yī)學(xué)專題學(xué)術(shù)研討會(huì)論文匯編[C];2007年

2 孟剛;李懿;郭喬楠;;高密度Oligo基因芯片篩選人永生化成骨細(xì)胞惡性轉(zhuǎn)化中印跡基因的研究[A];第四屆中國(guó)腫瘤學(xué)術(shù)大會(huì)暨第五屆海峽兩岸腫瘤學(xué)術(shù)會(huì)議論文集[C];2006年

3 楊新園;茍文麗;王海燕;;印跡基因IGF2和H19與胎兒生長(zhǎng)受限的關(guān)系[A];中華醫(yī)學(xué)會(huì)第五次全國(guó)圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年

4 馮煒煒;Rebecca T.Marquez;呂真;劉勁松;Karen H.Lu;郁茵華;Robert C.Bast Jr;;卵巢癌中腫瘤抑制性印跡基因PEG3的遺傳及表遺傳調(diào)節(jié)[A];中華醫(yī)學(xué)會(huì)第九次全國(guó)婦科腫瘤學(xué)術(shù)會(huì)議論文匯編[C];2006年

相關(guān)重要報(bào)紙文章 前2條

1 本報(bào)記者 何屹;幼時(shí)母為主,大了父決定[N];科技日?qǐng)?bào);2010年

2 本報(bào)記者 李學(xué)華;來(lái)自生命的神秘傳遞[N];科技日?qǐng)?bào);2007年

相關(guān)博士學(xué)位論文 前4條

1 徐偉;蓖麻胚乳表觀調(diào)控與基因組印跡研究[D];云南大學(xué);2016年

2 羅岸;煙草早期胚胎發(fā)生中印跡基因的篩選與分析[D];武漢大學(xué);2013年

3 馬玲;印跡基因在人類卵母細(xì)胞與植入前胚胎的表達(dá)及印跡疾病PWS分子診斷的研究[D];中南大學(xué);2007年

4 王東旭;豬孤雌胎兒中印跡基因表達(dá)和甲基化模式的分析[D];吉林大學(xué);2015年

相關(guān)碩士學(xué)位論文 前9條

1 韓彌朋;水稻胚乳非印跡基因的表達(dá)調(diào)控研究[D];四川農(nóng)業(yè)大學(xué);2014年

2 劉海華;人類印跡簇的起源和進(jìn)化[D];南方醫(yī)科大學(xué);2016年

3 周洋;豬印跡基因的克隆及印跡方向和表達(dá)模式分析[D];東北農(nóng)業(yè)大學(xué);2013年

4 張彩華;肺癌胰島素樣生長(zhǎng)因子-2基因的印跡狀態(tài)[D];大連醫(yī)科大學(xué);2005年

5 謝冰花;低等脊椎動(dòng)物中存在基因組印跡進(jìn)化的基礎(chǔ)[D];湖南師范大學(xué);2009年

6 陶凌云;胰島素對(duì)小鼠早期胚胎印跡基因Igf2和H19 mRNA表達(dá)的影響[D];揚(yáng)州大學(xué);2007年

7 蘇建民;不同培養(yǎng)基對(duì)牛轉(zhuǎn)基因克隆胚發(fā)育及印跡基因Igf2甲基化狀況的影響[D];西北農(nóng)林科技大學(xué);2009年

8 嚴(yán)永旭;促排卵對(duì)小鼠卵巢印跡基因H19DMR區(qū)甲基化狀態(tài)的影響[D];皖南醫(yī)學(xué)院;2015年

9 孟靜;印跡基因H19、LIT1和MEST在肺癌發(fā)生中的作用機(jī)制研究[D];大連醫(yī)科大學(xué);2008年



本文編號(hào):2130785

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2130785.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶30dad***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com