倏逝波光阱中多微球動(dòng)力學(xué)理論和實(shí)驗(yàn)研究
本文選題:雙光束光阱 + 四光束光阱; 參考:《國(guó)防科學(xué)技術(shù)大學(xué)》2016年博士論文
【摘要】:光與分散體系中分散相微粒的相互作用包含著能量和動(dòng)量的傳遞。光阱技術(shù)可以限制微粒運(yùn)動(dòng)的特性使得人們可以方便的觀測(cè)分散體系中單個(gè)微粒的動(dòng)力學(xué)過(guò)程,這對(duì)于研究微粒的個(gè)體行為和彼此間的相互作用是非常有用的。例如光阱中存在多微球的情況,其中每個(gè)微球不僅受到來(lái)自背景光場(chǎng)的力作用,還受到來(lái)自其他微球散射光場(chǎng)和流體運(yùn)動(dòng)的影響。在適當(dāng)?shù)臈l件下,多微球可以集聚形成各種結(jié)構(gòu),即光學(xué)結(jié)合(Opitcal binding)現(xiàn)象。盡管光阱中單微粒的力學(xué)特性已經(jīng)被廣泛研究,但人們往往容易忽視多微粒散射光的力學(xué)效應(yīng),因而對(duì)多微球動(dòng)力學(xué)的定量研究顯得比較粗糙;同時(shí)倏逝波光阱作為二維光阱,為光學(xué)結(jié)合現(xiàn)象提供了天然的載體,尚沒(méi)有對(duì)緊密結(jié)構(gòu)中微球行為特性的定量研究。對(duì)這些現(xiàn)象的觀測(cè)和研究,可以幫助人們更加全面的認(rèn)識(shí)光力作用和拓展新的應(yīng)用;谶@些需求,本文觀測(cè)了倏逝波光阱中多微球在光力作用下集聚形成小間隔的一維和二維結(jié)構(gòu)的實(shí)驗(yàn)現(xiàn)象,利用微球的位置波動(dòng)定量的分析了單體微球和一維微球鏈的動(dòng)力學(xué)特性。主要研究工作包括以下幾個(gè)方面:1.單微球布朗動(dòng)力學(xué)仿真。比較了常用的光阱剛度標(biāo)定方法,指出均方位移法和玻爾茲曼法都不需要微球在流體中的粘度信息,這種特性有助于近平面倏逝波光阱剛度的標(biāo)定。利用蒙特卡洛法和有限元法分別通過(guò)位置和速度迭代方式仿真了流體中單微球在受限布朗運(yùn)動(dòng)影響下的位置波動(dòng),比較了它們的特點(diǎn),介紹了速度相關(guān)記憶時(shí)間和位置相關(guān)記憶時(shí)間的概念。通過(guò)仿真結(jié)果求解剛度發(fā)現(xiàn)二者的誤差相當(dāng),但位置迭代方式計(jì)算時(shí)間顯著縮短了3~4個(gè)量級(jí)。在仿真中發(fā)現(xiàn)當(dāng)光阱中兩個(gè)正交方向上剛度差異較大時(shí),二維坐標(biāo)系的選取可以對(duì)微球位置波動(dòng)相關(guān)函數(shù)造成顯著的影響。最后仿真了微球在外力矩作用下轉(zhuǎn)動(dòng)并受到布朗運(yùn)動(dòng)影響的位置波動(dòng),分析了三種情況下微球位置波動(dòng)相關(guān)函數(shù)的特性,即轉(zhuǎn)動(dòng)位移占主要因素的情況、布朗位移占主要因素的情況和介于二者之間的情況,這種相關(guān)函數(shù)的分析提供了一種測(cè)量微球轉(zhuǎn)動(dòng)信息的方法。2.倏逝波光阱系統(tǒng)。搭建了雙光束倏逝波光阱系統(tǒng),觀測(cè)到直徑1umSiO2的微球形成一維鏈?zhǔn)浇Y(jié)構(gòu)的實(shí)驗(yàn)現(xiàn)象;搭建了四光束倏逝波光阱系統(tǒng),觀測(cè)到直徑1umSiO2的微球形成二維結(jié)構(gòu)的實(shí)驗(yàn)現(xiàn)象。3.多微球位置同時(shí)探測(cè)算法的實(shí)現(xiàn)。描述了顯微鏡物鏡衍射成像的特點(diǎn),仿真了設(shè)定信噪比下點(diǎn)源在圖像傳感器中所成的數(shù)字圖像。比較了單微球位置探測(cè)常用的圖像分析算法,根據(jù)觀察的微球鏈的運(yùn)動(dòng)特性,改進(jìn)了現(xiàn)有的極值中心法,在取得同等探測(cè)精度的前提下大幅縮短了探測(cè)時(shí)間,為后續(xù)實(shí)驗(yàn)中多微球位置的探測(cè)奠定了基礎(chǔ)。4.一維結(jié)構(gòu)中單體微球動(dòng)力學(xué)特性的研究。在雙光束倏逝波光阱中,直徑1um的SiO2微球在光力作用下形成間隔緊密的一維微球鏈。在得到微球的位置波動(dòng)后,分析了不同條件下微球平均間隔的差異;將每個(gè)微球看作處于各自的勢(shì)阱中,這些勢(shì)阱的剛度可以通過(guò)球-彈簧模型中各微球間連接彈簧的彈性系數(shù)來(lái)獲得。在不同條件下分別計(jì)算了鏈?zhǔn)浇Y(jié)構(gòu)中連接彈簧的彈性系數(shù),并首次從實(shí)驗(yàn)中定量地確定了它與激光功率和結(jié)構(gòu)中微球數(shù)量之間的線性關(guān)系。依據(jù)這種線性關(guān)系推算了微球形成穩(wěn)定鏈?zhǔn)浇Y(jié)構(gòu)所需的閾值功率,和實(shí)驗(yàn)中所觀察的現(xiàn)象相符合。5.一維微球鏈整體動(dòng)力學(xué)特性研究。比較了微球鏈和聚合物分子鏈的共同點(diǎn)和不同點(diǎn),詳細(xì)介紹了聚合物分子鏈基本的動(dòng)力學(xué)模型:Rouse模型和Zimm模型。由于同時(shí)求解微球鏈中多個(gè)微球的運(yùn)動(dòng)方程存在很大的困難,因此在單個(gè)微球位置波動(dòng)的基礎(chǔ)上,采用彼此獨(dú)立的模式將其組合以描述微球鏈的運(yùn)動(dòng)特性。建立了一般化的微球運(yùn)動(dòng)方程,介紹了描述微球間流體運(yùn)動(dòng)相互影響的張量。將遷移矩陣特征化得到微球鏈運(yùn)動(dòng)狀態(tài)的本征模式,并通過(guò)已知Rouse模型和Zimm模型的仿真驗(yàn)證了其有效性。利用矩陣特征化方法求解了實(shí)際微球鏈的本征模式,并探索了本征模式自相關(guān)函數(shù)衰減時(shí)間的特性。6.二維結(jié)構(gòu)中單體微球動(dòng)力學(xué)特性的研究。在四光束倏逝波光阱中記錄了微球在布朗運(yùn)動(dòng)作用下的位置波動(dòng),并驗(yàn)證了方形“晶格”結(jié)構(gòu)。變換坐標(biāo)系和去掉單元結(jié)構(gòu)質(zhì)心位置波動(dòng)后,展示了微球相對(duì)位置波動(dòng)的分布特性。根據(jù)其方差計(jì)算了各微球所處光阱的剛度,結(jié)果證實(shí)了微球單元結(jié)構(gòu)中各微球受到相等的光力作用。
[Abstract]:The interaction of dispersed phase particles in the light and dispersion system contains the transfer of energy and momentum. The optical trap technique can restrict the characteristics of the motion of particles so that it is convenient for people to observe the dynamics of a single particle in the dispersion system, which is very useful for the study of the individual behavior of particles and the interaction between these particles. There are many microspheres in the optical trap, in which each microsphere is not only affected by the force from the background light field, but also influenced by the scattering light field and fluid motion from other microspheres. Under appropriate conditions, the multi microspheres can be gathered to form various structures, that is, the optical binding (Opitcal binding) phenomenon. Although the mechanical properties of the single particles in the optical trap are in spite of the mechanical properties of the optical trap It has been widely studied, but people tend to ignore the mechanical effects of the multi particle scattering light, so the quantitative study of the dynamics of multi microspheres appears relatively rough. At the same time, the evanescent wave optical trap provides a natural carrier for the optical binding phenomenon as a two-dimensional optical trap, and there is no quantitative study on the behavior of microspheres in tight structure. The observation and study of some phenomena can help people to understand the effect of light force and expand the new application. Based on these requirements, this paper observates the experimental phenomenon that the multi microspheres in the evanescent wave optical trap gather with the light force to form a small spaced one and two dimensional structures, and the quantitative analysis of the single microspheres by the position fluctuation of the microspheres is used. The main research work includes the following aspects: 1. Brown dynamics simulation of single microsphere. Compared with the usual calibration method of optical well stiffness, it is pointed out that both the azimuth shift method and the Boltzmann method do not require the viscosity information of the microsphere in the fluid. This property is helpful to the standard of the near plane evanescent wave optical well. By using the Monte Carlo method and the finite element method, the position and velocity iteration methods are used to simulate the position fluctuation of the single microspheres under the influence of limited Brown motion respectively, and their characteristics are compared. The concepts of the time of the velocity related memory and the related memory time of the position are introduced. Through the simulation results, the errors of the two are found. The calculation time of the position iterative method shortened the 3~4 magnitude significantly. In the simulation, it was found that when the stiffness difference between the two orthogonal directions in the optical trap was large, the selection of the two-dimensional coordinate system could have a significant influence on the correlation function of the microsphere position fluctuation. Finally, the microspheres were rotated under the external torque and influenced by the Brown motion. The characteristics of the position fluctuation of the microspheres are analyzed in three cases, that is, the main factors of the rotation displacement, the main factors of the Brown displacement and the situation between the two, and the analysis of the correlation function provides a method of measuring the transfer information of the microspheres.2. evanescent wave optical well system. A double beam evanescent wave optical trap system is used to observe the experimental phenomenon of one dimension chain structure of the microspheres with diameter 1umSiO2, and a four beam evanescent wave optical trap system is built. The experimental phenomenon of the formation of a two-dimensional structure of 1umSiO2 microspheres is observed..3. multi microsphere location detection algorithm is realized. The characteristics of the diffraction imaging of the microscope objective are described. The digital image of the point source in the image sensor under the set signal to noise ratio is simulated. The image analysis algorithm commonly used in the single microsphere location detection is compared. According to the motion characteristics of the observed microsphere chain, the existing extremum center method is improved. The detection time is shortened greatly on the premise of obtaining the same detection precision, and it is a multi microsatellite in the follow-up experiment. In the double beam evanescent wave optical trap, the SiO2 microspheres with diameter 1um form a compact one dimension microsphere chain under the action of light force in the double beam evanescent wave optical trap. The difference of the average interval between the microspheres under different conditions is analyzed and each microsphere is divided into each microsphere in the evanescent wave optical trap of a double beam. In the potential well, the stiffness of these potential wells can be obtained by the elastic coefficient of the spring between the microspheres in the ball spring model. The elastic coefficients of the spring are calculated in the chain structure under different conditions, and the quantity between the laser power and the number of the microspheres in the structure is determined for the first time in the experiment. Based on this linear relation, the threshold power required for the formation of a stable chain of microspheres is calculated. The whole dynamics characteristics of the.5. one-dimensional microsphere chain are studied in accordance with the observed phenomena in the experiment. The common points and different points of the microsphere chain and the polymer chain are compared, and the basic kinetics of the polymer molecular chain are detailed and detailed. Model: Rouse model and Zimm model. Because there is a great difficulty in solving the motion equations of microspheres in microspheres at the same time, on the basis of the fluctuation of the single microspheres, they are combined to describe the motion characteristics of the microspheres. A general microsphere motion equation is established, and the microsphere flow is described. The eigenmode of the motion state of the microsphere chain is obtained by characterizing the migration matrix, and the validity of the model is verified by the simulation of the known Rouse model and the Zimm model. The eigenmode of the actual microsphere chain is solved by the matrix characterization method, and the characteristic.6. of the eigenmode autocorrelation function is explored. The dynamic characteristics of a single microsphere in a two-dimensional structure are studied. In the four beam evanescent wave optical trap, the position fluctuation of the microspheres under the action of Brown is recorded and the square lattice structure is verified. The distribution characteristics of the position fluctuation of the microsphere phase are displayed after the change of the coordinate system and the position of the mass center of the removed unit. The stiffness of the optical trap at each microsphere is calculated. The results confirm that the microspheres in the microsphere structure are subjected to the same optical force.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O43
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔國(guó)強(qiáng),李銀妹,翁明琪,樓立人;環(huán)形光對(duì)光阱有效捕獲力的提高[J];中國(guó)激光;2001年01期
2 尹良紅,李銀妹,樓立人,張達(dá),陳洪濤;空心新型光阱的實(shí)驗(yàn)研究[J];中國(guó)激光;2003年03期
3 鮑建華,龔鏨,陳洪濤,王忠,李銀妹,樓立人;粒子的軸向位移對(duì)光阱力學(xué)參數(shù)標(biāo)定的影響[J];中國(guó)激光;2005年10期
4 王忠;李銀妹;樓立人;王浩威;龔鏨;;雙光阱法測(cè)量光阱橫向力場(chǎng)分布[J];中國(guó)激光;2006年02期
5 彭飛;姚保利;雷銘;嚴(yán)紹輝;;拖曳法測(cè)量微粒光阱力和光阱剛度的實(shí)驗(yàn)研究[J];光電子.激光;2010年01期
6 喻有理;劉丹東;張孝林;;用漂移和擴(kuò)散概念求解光阱中細(xì)胞的熱驅(qū)動(dòng)分布[J];大學(xué)物理;2010年05期
7 周丹丹;任煜軒;劉偉偉;龔雷;李銀妹;;時(shí)間飛行法測(cè)量光阱剛度的實(shí)驗(yàn)研究[J];物理學(xué)報(bào);2012年22期
8 李解;朱艷英;呂巍;;對(duì)米氏粒子軸向光阱力與橫向光阱力的測(cè)量研究[J];佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
9 鐘敏成;張文靜;周金華;李銀妹;田來(lái)科;白晉濤;;背散光實(shí)時(shí)分辨光阱中的納米粒子個(gè)數(shù)[J];中國(guó)激光;2010年02期
10 李銀妹;光的力學(xué)效應(yīng)及光阱力的測(cè)量[J];物理實(shí)驗(yàn);2003年01期
相關(guān)會(huì)議論文 前10條
1 劉豐瑞;張志剛;程騰;張青川;伍小平;;錐環(huán)狀光阱對(duì)微米級(jí)氣溶膠的動(dòng)態(tài)捕捉[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 張蕾;程波濤;陳許敏;陸璇輝;;空心光阱在原子冷卻應(yīng)用中的探索[A];大珩先生九十華誕文集暨中國(guó)光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年
3 梁言生;姚保利;雷銘;嚴(yán)紹輝;楊延龍;但旦;郜鵬;閔俊偉;葉彤;;光鑷光阱剛度的標(biāo)定[A];2013年(第五屆)西部光子學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
4 付軍賢;陳帥;王義遒;;非三維光束組態(tài)磁光阱的實(shí)現(xiàn)與特性研究[A];第九屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)摘要集(Ⅱ)[C];2000年
5 張華;韓良愷;;用位相型菲衍涅耳透鏡產(chǎn)生三維光阱陣列及其光學(xué)晶格[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
6 付軍賢;李義民;陳徐宗;楊東海;王義遒;;磁光阱特性及冷原子集合行為的實(shí)驗(yàn)研究[A];第八屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文摘要選[C];1998年
7 周琦;陸俊發(fā);印建平;;由空間光調(diào)制器產(chǎn)生的冷原子(分子)徑向雙光阱與軸向多光阱方案[A];第十六屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文摘要集[C];2011年
8 劉春香;郭紅蓮;降雨強(qiáng);李兆霖;程丙英;張道中;;光鑷光阱力精確標(biāo)定中的振蕩干擾問(wèn)題[A];第六屆全國(guó)光學(xué)前沿問(wèn)題研討會(huì)論文摘要集[C];2003年
9 王軍民;閆樹(shù)斌;耿濤;李剛;張玉馳;張?zhí)觳?彭X墀;;銫原子雙磁光阱中冷原子的輸運(yùn):從推載到導(dǎo)引[A];第十二屆全國(guó)量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2006年
10 朱艷英;高秋娟;魏勇;;光鑷橫向光阱力的理論分析與實(shí)驗(yàn)測(cè)量[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
相關(guān)博士學(xué)位論文 前6條
1 孫大立;鋰原子的冷卻囚禁及相干操控實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2016年
2 王杰;基于階梯型原子系統(tǒng)的超精細(xì)作用常數(shù)精密測(cè)量和雙色磁光阱[D];山西大學(xué);2016年
3 劉偉偉;自加速光場(chǎng)和陣列光場(chǎng)的研究及在光捕獲中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
4 韓翔;倏逝波光阱中多微球動(dòng)力學(xué)理論和實(shí)驗(yàn)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2016年
5 衛(wèi)棟;~(87)Rb-~(40)K玻色費(fèi)米混和氣體磁光阱的實(shí)驗(yàn)研究[D];山西大學(xué);2007年
6 任煜軒;新型調(diào)制光阱的理論、實(shí)驗(yàn)與單分子應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 宗兆玉;渦旋光阱中微粒所受的軸向光阱力及力矩研究[D];哈爾濱工業(yè)大學(xué);2015年
2 張竹君;超冷銣銫分子制備中暗磁光阱的優(yōu)化及(2)0~+態(tài)光譜測(cè)量[D];山西大學(xué);2016年
3 馬征;量子信息應(yīng)用中的磁光阱及其時(shí)序控制系統(tǒng)的研究[D];曲阜師范大學(xué);2013年
4 靳李麗;雙光源雙光阱法驅(qū)動(dòng)微型粒子旋轉(zhuǎn)的理論和實(shí)驗(yàn)研究[D];燕山大學(xué);2012年
5 王國(guó)慶;雙光阱光鑷系統(tǒng)標(biāo)定及力譜測(cè)試研究[D];天津大學(xué);2016年
6 程曉偉;磁光阱中超冷等離子體的產(chǎn)生與驗(yàn)證研究[D];中國(guó)科學(xué)院研究生院(近代物理研究所);2015年
7 談愛(ài)玲;單光源雙光阱光鑷設(shè)計(jì)及光阱效應(yīng)分析和數(shù)值仿真[D];燕山大學(xué);2004年
8 郭成凱;單光纖光鑷數(shù)值仿真和光阱力計(jì)算[D];哈爾濱工程大學(xué);2007年
9 高秋娟;血紅細(xì)胞的橫向光阱力及光驅(qū)動(dòng)雙折射微粒的研究[D];燕山大學(xué);2008年
,本文編號(hào):2114128
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/2114128.html