基于腔量子電動力學(xué)的光機械系統(tǒng)與自旋壓縮研究
本文選題:腔量子電動力學(xué) 切入點:腔光機械 出處:《中國科學(xué)技術(shù)大學(xué)》2015年博士論文
【摘要】:信息科學(xué)是研究信息運動規(guī)律和應(yīng)用方法的科學(xué),近30年來,信息科學(xué)與量子力學(xué)相結(jié)合而興起的量子信息科學(xué)受到了廣泛的關(guān)注。量子信息科學(xué)由于一些新奇特性,比如量子態(tài)的不可克隆性、線性疊加性、糾纏特性等,使其在量子計算、量子信息、量子度量等方面顯示出十分廣闊技術(shù)應(yīng)用前景。量子計算機的并行處理能力使其計算速度遠遠快于經(jīng)典計算機,在密碼破解、量子搜索等方面展示出了巨大的潛力。量子信息利用量子態(tài)不可被克隆性、糾纏特性等特點已經(jīng)在量子密碼、量子通信等實用化領(lǐng)域取得了重大的進展。測量高精度物理量的需求推動了量子度量學(xué)的發(fā)展,在量子時鐘和引力探測等領(lǐng)域的研究也越來越熱,在有些領(lǐng)域已經(jīng)突破了經(jīng)典物理的極限,正在向著海森堡極限逼近。量子信息科學(xué)的優(yōu)勢吸引著人們尋求各色各樣的信息載體來實現(xiàn)量子計算機。量子計算機在物理實現(xiàn)上需要考慮各種折衷因素,在離子阱、超導(dǎo)電子電路、線性光學(xué)、腔量子電動力學(xué)裝置和分子核磁共振等系統(tǒng)中已經(jīng)取得了很大的進展。但是實際量子物理體系中會有各種各樣的耗散,而且量子比特數(shù)目越多耗散會越嚴重。幸運的是有些體系在某些方面的優(yōu)勢非常明顯,因此混合物理系統(tǒng)也受到了越來越多的關(guān)注。腔光機械系統(tǒng)在量子信息存儲、量子混沌、波長轉(zhuǎn)換等方面有很大的潛在應(yīng)用前景,特別是其與原子或者量子點等耦合形成的混合物理體系,更是近年來研究的一個熱點。腔量子電動力學(xué)(C-QED)是研究原子和光學(xué)模式之間相互耦合的一個重要領(lǐng)域。在高品質(zhì)因子的光學(xué)腔中,光子與原子可以進行多次相互作用,實現(xiàn)原子與光場很強耦合,從而制備自旋壓縮態(tài)(SSS)用于量子度量。在本篇論文中,我們首先簡要介紹量子信息科學(xué)的一些基本知識,討論了腔光機械系統(tǒng)和腔量子電動力學(xué)裝置。對于腔光機械系統(tǒng),我們研究了該系統(tǒng)一些基本性質(zhì)和應(yīng)用,還分析了其與量子點耦合形成的混合物理體系、單光子和雙光子的輸入輸出、聲子激光。對于腔量子電動力學(xué)裝置,我們就制備自旋壓縮態(tài)方面做了詳細的討論,主要包括以下幾點:在腔壓縮體系中通過失諧來加強自旋壓縮;在氮-空穴(NV)色心體系中基于幾何相位通過聲子誘導(dǎo)自旋壓縮;通過連續(xù)驅(qū)動NV自旋鏈產(chǎn)生壓縮穩(wěn)態(tài)。具體內(nèi)容為如下四個方面:1.腔光機械系統(tǒng)研究腔光機械系統(tǒng)是實現(xiàn)量子通信和量子計算一個非常重要的系統(tǒng),里面有豐富的物理現(xiàn)象和很多潛在的應(yīng)用。我們在光機械誘導(dǎo)透明、布里淵散射誘導(dǎo)透明以及非互易光存儲等方面做了一些簡單的討論。在光機械與量子點耦合形成的混合物理體系中,我們發(fā)現(xiàn)了真空腔誘導(dǎo)透明現(xiàn)象,從強弱耦合兩個角度做了詳細的分析。此外,我們還將經(jīng)典控制光與真空腔誘導(dǎo)下的透明現(xiàn)象做了對比。最后,為了能更好地理解誘導(dǎo)透明現(xiàn)象,我們在一般三能級原子體系中,通過非相干控制實現(xiàn)了電磁誘導(dǎo)透明(EIT)與Autler-Towns劈裂(ATS)的相互轉(zhuǎn)換,并對兩者做了區(qū)分。在光機械的輸入輸出研究中,我們得到了在平方耦合的情況下單光子的輸出譜,其展現(xiàn)出聲子偶數(shù)激發(fā)的特點。以此為基礎(chǔ),我們進一步研究了在實空間下雙光子的輸入輸出情況。對于聲子激光,我們提出了幾個可行的實現(xiàn)方案。2.失諧加強腔自旋壓縮我們理論上詳細討論了實驗上已經(jīng)實現(xiàn)的腔自旋壓縮方案中各個參數(shù)對自旋壓縮的影響,與近共振的方案相比,我們發(fā)現(xiàn)失諧可以將腔壓縮度從原來的S一2/5大幅度提高到S-2/3,其中S是總自旋數(shù)。此外,我們還發(fā)現(xiàn)原子和腔之間弱的相互作用和大失諧可以加強原子系綜的自旋壓縮。解析結(jié)果表明,自旋壓縮來源于由激光驅(qū)動誘導(dǎo)的與自旋態(tài)相關(guān)的幾何相位,因此在這里大失諧非常重要。對于實際的物理系統(tǒng)來說,一些噪聲是不可避免的。我們分析了由于原子拉曼散射對自旋壓縮所產(chǎn)生的影響,結(jié)果表明通過合適的失諧可以優(yōu)化自旋壓縮。大失諧激光驅(qū)動使進入到光學(xué)腔中的有效光場減少,因此需要更長的時間才能達到最優(yōu)的壓縮。在這種情況下,單自旋退相干不得不考慮,我們發(fā)現(xiàn)更強的驅(qū)動光可以有效的減弱這種噪聲對自旋壓縮的破壞。大失諧激光驅(qū)動也有可能激發(fā)光學(xué)腔的其他光學(xué)模式,我們對多模式光場與原子系綜的耦合也做了詳細的討論,發(fā)現(xiàn)其它光場模式對自旋壓縮的影響完全可以忽略。最后,我們將實驗上可實現(xiàn)的參數(shù)代入方案中,其結(jié)果說明通過失諧的調(diào)節(jié)來加強自旋壓縮在目前的實驗條件下很容易實現(xiàn)。作為產(chǎn)生自旋壓縮的一個補充,基于此方案我們對通過測量來實現(xiàn)非經(jīng)典態(tài)也做了一些討論。3.氮-空穴(NV)色心體系中基于幾何相位的聲子誘導(dǎo)自旋壓縮我們提出了一個通過單機械模式誘導(dǎo)幾何相位的方案來實現(xiàn)自旋壓縮,在這里NV鏈散射耦合到單機械振子上。幾何相位由于其自身的屬性,對聲子的初態(tài)非常不敏感,這是實驗上一個非常重要的優(yōu)勢。我們研究了在不同的熱噪聲和機械品質(zhì)因子(Q)下的自旋壓縮性質(zhì),結(jié)果表明完美單軸壓縮可以在熱噪聲和機械品質(zhì)因子合適的比值下實現(xiàn)。在實際的物理體系中,NV鏈會與一些熱庫耦合,這種耦合引起了退相干,因此對自旋壓縮產(chǎn)生了破壞。我們通過動力學(xué)退耦合脈沖序列來抑制這種熱庫對自旋壓縮的影響,在高品質(zhì)因子的金剛石氮-空穴自旋鏈中,我們可以實現(xiàn)完美的單軸自旋壓縮。最后,我們還提出了一些實驗上可行性的方案,還對一些實驗上已經(jīng)實現(xiàn)的參數(shù)做了一些分析,結(jié)果表明我們提出的方案在目前的實驗條件下是可行的。4.通過連續(xù)驅(qū)動氮-空穴(NV)自旋鏈產(chǎn)生壓縮穩(wěn)態(tài)在NV自旋鏈全同地耦合到同一個光學(xué)模式的系統(tǒng)中,我們提出了通過連續(xù)光驅(qū)動NV自旋來產(chǎn)生自旋壓縮穩(wěn)態(tài)的方案。在滿足一定頻率匹配的條件下,我們通過旋波近似得到了系統(tǒng)的有效哈密頓量。該有效哈密頓量表明集體NV自旋暗態(tài)的存在,通過對這種暗態(tài)的研究,我們發(fā)現(xiàn)該暗態(tài)就是自旋壓縮態(tài)。這種自旋壓縮態(tài)可以通過光場的耗散方式來制備,因此耗散在這里成為了相干的來源。我們研究了在驅(qū)動光不同頻率和強度下自旋壓縮穩(wěn)態(tài)的情況,頻率越大滿足旋波近似的條件越好,自旋壓縮的動態(tài)波動越小,壓縮也越好,但是其最后趨于穩(wěn)定的壓縮完全取決于驅(qū)動光的強度。此外,我們也分析了光子噪聲對壓縮的影響。最后,我們討論了這種方案在頻率失配下的自旋相變現(xiàn)象。
[Abstract]:Information science is the study of information movement and the application of the method of science, in the past 30 years, the combination of information science and quantum mechanics of quantum information science and the rise has attracted widespread attention. Quantum information science because of some novel properties, such as quantum non clone, linear superposition, entanglement,. In quantum computation, quantum information, quantum measurement shows a very broad application prospect. The parallel processing ability of quantum computer to calculate much faster than classical computers, the password is cracked, quantum search and other aspects show great potential. The use of quantum information quantum state can not be cloned, entanglement characteristics in quantum cryptography, quantum communication and other practical fields and made great progress. The high precision measurement of physical quantity needs to promote the development of quantum metrology, in quantum clock and Research in the field of gravity detection is more and more hot in some areas has exceeded the limit of classical physics, is toward the approaching Heisenberg limit. The information carrier of quantum information science advantages to attract people to seek to achieve the diversiform quantum computer. The quantum computer needs to consider various factors on the physical realization of compromise, in an ion trap, superconducting electronics circuit, linear optics, much progress has been made in cavity quantum electrodynamics and NMR systems. But the actual dissipative quantum physical systems in various, and the number of qubits more dissipation will be more severe. Fortunately some advantages in some aspects of the system is very obvious, so mixed physical system has attracted more and more attention. Optomechanical system in quantum information storage, quantum chaos, aspects of wavelength conversion is big The potential application prospect, especially the mixed physical system formation and coupling of atoms or quantum dots, it is a research hotspot in recent years. The cavity quantum electrodynamics (C-QED) is between atom and optical mode coupling is an important field in the optical cavity. High quality factor, photons and atoms can be multiple interactions, the atoms and the light field is strong coupling, thereby preparing spin squeezed state (SSS) for quantum measurement. In this thesis, we first briefly introduce some basic knowledge of quantum information science, discusses the mechanical system and optical cavity quantum electrodynamics. The optical mechanical system, we study the system of some basic properties and application, analyzes its formation and hybrid physical system coupled quantum dots, input and output, single and two photon phonon laser for cavity quantum electrodynamics. We have prepared device, spin squeezed state are discussed, mainly including the following: in the cavity compression system by detuning to strengthen spin squeezing; in nitrogen vacancy (NV) center system based on geometric phase by spin phonon induced by continuous compression; drive NV spin chain to produce steady compression specific contents into four aspects as follows: 1. cavity optical mechanical system of optical mechanical system is the realization of quantum communication and quantum computing is a very important system, there are abundant physical phenomena and many potential applications. We are in the light mechanical induced transparency, Brillouin scattering induced transparency and non reciprocal optical storage and so on do some simple discussion. Hybrid physical system formed in the coupling of mechanical and quantum dots, we found that the vacuum cavity induced transparency phenomenon from two aspects in detail the coupling strength Analysis. In addition, we will also control the classic transparent phenomenon of light with the vacuum chamber under the induction were compared. Finally, in order to better understand the induced transparency phenomenon, we in general three level atomic system, the non coherent control of electromagnetically induced transparency (EIT) and Autler-Towns splitting (ATS) conversion of the two, and made a distinction between input and output. In the light of the machine, we get the output in the case of a single photon coupled square spectrum, which shows the characteristics of even phonon excitation. On this basis, we further study the input and output of double photon in real space. For phonon laser, we put forward several feasible scheme of.2. cavity detuning strengthen spin squeezing theory we discussed each parameter has been achieved on experimental spin cavity compression scheme on spin compression effect, and the near resonance Compared, we found the detuning can be compressed from a S cavity of 2 / 5 greatly increased to S-2/3, where S is the total number of spins. In addition, we also found that the interaction between the atoms and the cavity is weak and large detuning can strengthen spin atomic ensemble compression. The results show that the spin the compression comes from the laser driven and spin state geometric phase induction, so here the large detuning is very important for the actual physical system, some noise is inevitable. We analyzed the Raman scattering on atomic spin squeezing the influence, the results show that the appropriate detuning can optimize the spin compression. Large detuning laser drive into the optical cavity of the light field effectively reduced, therefore need longer time to achieve optimal compression. In this case, the single spin decoherence had to be taken into account, we find more Strong driving light can reduce this noise effectively on spin squeezing damage. Large detuned laser driver may also be emitting other optical cavity model, we on multi mode light field and atomic ensembles coupling also discussed in detail, find other light field of spin squeezing can be we will be ignored. Finally, parameters can be realized on the experimental scheme, the results show that by adjusting the detuning to enhance the spin squeezing is easy to implement in the present experimental conditions. As a supplement to produce spin compression, based on this scheme we measured by non classical states have done some discussion.3. nitrogen vacancy (NV) phonon geometric phase induced spin compression we propose a mechanical model induced by single geometric phase scheme to realize spin compression based on center system, here NV chain scattering Coupled to a single mechanical oscillator. The geometric phase because of its own property, the initial state is not sensitive to the phonon, this is a very important advantage of experiment. We studied the thermal noise and mechanical quality factor (Q) under different spin squeezing properties, results show that perfect uniaxial compression can be achieved the ratio of thermal noise and mechanical quality factor appropriate. In the physical system, NV chain and some thermal reservoir coupling, the coupling caused by decoherence, resulting in damage to the spin squeezing through our dynamic decoupling pulse sequences to suppress the thermal reservoir effect on spin squeezing, in diamond nitrogen high quality factor - hole spin chain, uniaxial compression spin we can achieve perfect. Finally, we present some experiments on the feasibility of the scheme, the parameters of some experiments has made some Analysis results show that our proposed scheme in the present experimental conditions is feasible by.4. nitrogen hole continuous drive (NV) spin chain produce compression homeostasis in NV spin chain with coupled to the system with an optical model, we put forward by continuous light driven NV to generate spin spin squeezing state scheme. Under certain frequency matching conditions, we obtained by rotating wave approximation effective Hamiltonian. The effective Hamiltonian that collective NV spin dark state, through the study of this dark state, we found that the dark state is spin squeezed state. By way of field dissipation the preparation of this spin squeezed state, thus became the source of coherent dissipation here. We studied in the light of different driving frequency and intensity under steady-state conditions of spin squeezing, the greater the frequency to meet the conditions of the rotating wave approximation The better dynamic fluctuation of spin squeezing decreases, compression is also better, but the final stable compression depends entirely on the driving light intensity. In addition, we also analyzed the influence of photon noise on compression. Finally, we discuss the scheme in the frequency distribution of the spin transition phenomenon.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O413.2
【相似文獻】
相關(guān)期刊論文 前10條
1 李秋艷,謝征微,孫威立;海森伯自旋鏈的非線性自旋波進動(英文)[J];曲阜師范大學(xué)學(xué)報(自然科學(xué)版);2003年04期
2 陳萬金,孫穎,鄭曉光,王月梅;自旋波頻率移動的缺陷效應(yīng)[J];吉林師范大學(xué)學(xué)報(自然科學(xué)版);2003年02期
3 吳式樞;自旋波理論最近的發(fā)展[J];物理學(xué)報;1958年03期
4 蔡魯戈;;鐵氧體中自旋波聲波參量耦合激發(fā)理論[J];南京大學(xué)學(xué)報(自然科學(xué)版);1963年06期
5 翟宏如,劉寄浙;自旋波的傳播特性及其應(yīng)用[J];磁性材料及器件;1975年01期
6 韓世瑩;自旋波線寬的測量[J];物理學(xué)報;1981年06期
7 閻守勝;稀氣體中發(fā)現(xiàn)自旋波[J];物理;1986年01期
8 楊震;;自旋波器件及其在微波技術(shù)中的應(yīng)用[J];磁性材料及器件;1989年01期
9 云國宏,,閻俊虎,班士良,梁希俠;耦合有限鐵磁性自旋鏈中的界面自旋波及其存在條件[J];內(nèi)蒙古大學(xué)學(xué)報(自然科學(xué)版);1994年04期
10 閆祖威,云國宏;對稱磁性三明治結(jié)構(gòu)中的界面自旋波及其存在條件[J];內(nèi)蒙古大學(xué)學(xué)報(自然科學(xué)版);1995年06期
相關(guān)會議論文 前4條
1 王選章;;長波長自旋波的渦流阻尼效應(yīng)[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(上冊)[C];1999年
2 李巖;王懷玉;任榮東;;橫場下反鐵磁耦合薄膜的自旋波[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集Ⅰ[C];2004年
3 邢定鈺;;自旋輸運和巨磁電阻——自旋電子學(xué)的物理基礎(chǔ)之一[A];中國高等科學(xué)技術(shù)中心論文集[C];2004年
4 張鵬翔;劉玉龍;徐孝貞;楊先春;;替代的鐵石榴石單晶的喇曼散射譜[A];第二屆全國光散射學(xué)術(shù)會議論文集(下)[C];1983年
相關(guān)重要報紙文章 前1條
1 記者 劉霞;實驗證實:磁納米接觸可使自旋波“繁殖”[N];科技日報;2011年
相關(guān)博士學(xué)位論文 前10條
1 芮俊;冷原子自旋波相干操控及玻色費米簡并混合氣制備[D];中國科學(xué)技術(shù)大學(xué);2015年
2 張延磊;基于腔量子電動力學(xué)的光機械系統(tǒng)與自旋壓縮研究[D];中國科學(xué)技術(shù)大學(xué);2015年
3 金立川;磁性異質(zhì)結(jié)的自旋輸運及自旋動力學(xué)調(diào)控研究[D];電子科技大學(xué);2014年
4 唐國棟;鈷基氧化物材料的自旋熵及熱電性能研究[D];南京大學(xué);2011年
5 黃元杰;釩、鈦基尖晶石中的軌道、自旋和晶格的耦合[D];中國科學(xué)技術(shù)大學(xué);2012年
6 李秋菊;自旋液體材料的低溫?zé)醾鲗?dǎo)[D];中國科學(xué)技術(shù)大學(xué);2013年
7 李再東;一維自旋鏈及光格子中旋量玻色—愛因斯坦凝聚的非線性動力學(xué)[D];山西大學(xué);2005年
8 明星;自旋自由度對關(guān)聯(lián)電子體系材料物理性質(zhì)的影響:第一性原理研究[D];吉林大學(xué);2009年
9 雷雨;自旋哈密頓量的微觀解釋—“偽自旋”波函數(shù)方法[D];電子科技大學(xué);2010年
10 侯小娟;雙層鐵磁系統(tǒng)中交換耦合式自旋動力學(xué)研究[D];內(nèi)蒙古大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 趙小兵;單層鐵磁金屬薄膜中的自旋整流效應(yīng)研究[D];蘭州大學(xué);2015年
2 賈寧;低維自旋阻挫體系磁化過程中的微觀狀態(tài)變化模擬研究[D];東北大學(xué);2014年
3 饒金威;鐵鎳合金薄膜中的自旋駐波研究[D];蘭州大學(xué);2015年
4 李恒甫;橫向磁場中自旋波激發(fā)的微觀機制[D];華中科技大學(xué);2007年
5 趙新軍;Z型自旋梯子模型的自旋波與比熱[D];新疆大學(xué);2007年
6 彭麗君;一維非均勻磁性體系的自旋波理論研究[D];廣州大學(xué);2008年
7 孔德欣;自旋鏈中的量子信息傳輸[D];中國科學(xué)技術(shù)大學(xué);2009年
8 彭霞;簡立方雙層鐵磁性薄膜中自旋波的研究[D];內(nèi)蒙古大學(xué);2010年
9 關(guān)玉琴;體各向異性場和自旋鏈長度對界面自旋波存在條件的影響[D];內(nèi)蒙古大學(xué);2004年
10 梁明明;二維反鐵磁海森堡模型的有限溫度自旋波理論[D];煙臺大學(xué);2010年
本文編號:1664675
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1664675.html