含散度和旋度算子的方程組與端點估計
發(fā)布時間:2018-03-13 14:15
本文選題:熱電模型 切入點:Beltrami場 出處:《華東師范大學》2017年博士論文 論文類型:學位論文
【摘要】:本文研究幾類來自數(shù)學物理中的含散度和旋度算子的方程組,得到了一些解的存在性、正則性、Liouville型結(jié)果;建立了向量場的Hardy型不等式,在適當?shù)目臻g之下,得出了一類分數(shù)次積分算子端點情形的有界性.在第一章緒論中,我們簡要地介紹了本文的研究背景與主要結(jié)果.在第二章中我們考察了一個穩(wěn)態(tài)的熱電模型.該模型是由一個非線性Maxwell方程組和一個橢圓方程耦合而成.我們對一般邊值得到了弱解的存在性與正則性結(jié)果,并在小邊值情形下給出了唯一性結(jié)論.同時,我們也研究了幾類相關(guān)的模型.第三章由兩部分組成.在第一部分中,我們得到了無界區(qū)域中的Beltrami流的Liouville型結(jié)果,對于無界區(qū)域情形,在無窮遠提衰減性條件,當區(qū)域是星形區(qū)域時在邊界上切向為零,和以及當區(qū)域是星形區(qū)域之外時在邊界上法向為零,Beltrami場都是平凡的.運用同樣的研究技巧,我們還研究了Maxwell和Stokes第一特征值以及第一特征函數(shù)的性質(zhì).在第二部分中,在外力小的條件下,運用Schauder不動點定理得到Hall-MHD方程組其磁場Holder連續(xù)的弱解的存在性.在第四章中,首先我們考慮了在L1和加權(quán)L1向量場空間中的分數(shù)次積分算子.利用分數(shù)次積分算子的有界性結(jié)果和Stein-Weiss不等式,我們給出一類Caffarelli-Kohn-Nirenberg不等式的新證明,并建立了新的div-curl不等式.其次,我們對Bourgain和Brezis關(guān)于L1向量場的不等式給出了一個初等證明.最后,我們對有界區(qū)域中的向量場建立了Hardy型不等式.
[Abstract]:In this paper, we study some kinds of equations with divergence and curl operators in mathematics and physics, obtain the existence of some solutions, regularity and Liouville type results, and establish Hardy type inequalities for vector fields in proper spaces. The boundedness of the extreme case of a class of fractional integral operators is obtained. We briefly introduce the research background and main results of this paper. In chapter 2, we investigate a steady-state thermoelectric model, which consists of a nonlinear Maxwell system coupled with an elliptic equation. The existence and regularity of weak solutions for general edges are worth obtaining. At the same time, we study some related models. Chapter 3 is composed of two parts. In the first part, we obtain the Liouville type results of Beltrami flows in unbounded regions. For the case of unbounded region, the attenuation condition is proposed at infinity. When the region is star-shaped, the tangent direction is zero on the boundary. And the Beltrami field is trivial when the region is outside the star-shaped region. Using the same technique, we also study the properties of the first eigenvalues and the first eigenfunctions of Maxwell and Stokes. In the second part, Under the condition of small external force, Schauder fixed point theorem is used to obtain the existence of the weak solution of the magnetic field Holder continuity for the Hall-MHD equations. In Chapter 4th, Firstly, we consider fractional integral operators in L1 and weighted L1 vector field spaces. By using boundedness of fractional integral operators and Stein-Weiss inequality, we give a new proof of Caffarelli-Kohn-Nirenberg inequality. A new div-curl inequality is established. Secondly, we give an elementary proof of Bourgain's and Brezis's inequalities on L1 vector fields. Finally, we establish Hardy type inequalities for vector fields in bounded domains.
【學位授予單位】:華東師范大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O175
【相似文獻】
相關(guān)期刊論文 前10條
1 ;測量激光輻射發(fā)散度的方法[J];激光與光電子學進展;1975年12期
2 楚昆亮;散度在能量原理中的應(yīng)用[J];華中工學院學報;1980年01期
3 林宗鴻;用三點法計算散度時的參數(shù)問題[J];南京氣象學院學報;1982年02期
4 彭金泉;計算任意三角形平均渦度和散度的一種新方案[J];氣象;1984年11期
5 王愛仁;;關(guān)于電磁場的散度和旋度的教學[J];遼寧師范大學學報(自然科學版);1985年04期
6 李洪亮;張虹;劉淑孝;;散度的物理意義[J];赤峰學院學報(自然科學版);2012年09期
7 蔡定軍,鄭宏翔;一個計算球面不規(guī)則多邊形內(nèi)平均渦度、散度的方案[J];氣象學報;1991年03期
8 薛永強;高艷陽;;分散度對電化學反應(yīng)的影響[J];太原機械學院學報;1992年01期
9 周玉興;張丹丹;韋儒和;;關(guān)于梯度、旋度和散度的相互關(guān)系[J];高師理科學刊;2013年04期
10 戴振,
本文編號:1606736
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1606736.html
最近更新
教材專著