天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

非退化區(qū)域上的分歧模型

發(fā)布時(shí)間:2018-02-14 02:36

  本文關(guān)鍵詞: 奇點(diǎn) 分歧 k-非退化 分歧模型 拓?fù)涠?Banach空間 Laplace算子 Fredholm算子 出處:《東北師范大學(xué)》2016年博士論文 論文類型:學(xué)位論文


【摘要】:本文將奇點(diǎn)理論和非線性分析方法相結(jié)合,應(yīng)用到無(wú)限維Banach空間中的分歧理論中去,主要研究單參數(shù)非線性分歧理論中分歧點(diǎn)的判定與識(shí)別問(wèn)題,以及分歧點(diǎn)處的半解支數(shù)目問(wèn)題.對(duì)無(wú)限維Banach空間中的一類偏微分方程的分歧現(xiàn)象,采用類似于光滑映射有限決定性的思想,建立描述此分歧現(xiàn)象的由有限個(gè)加權(quán)齊次多項(xiàng)式函數(shù)的零點(diǎn)集所構(gòu)成的分歧模型,并運(yùn)用此分歧模型討論多重特征根是否為分歧點(diǎn)的判定與分歧類型的識(shí)別.文中的分歧模型是一類由非線性問(wèn)題誘導(dǎo)出的映射芽的奇點(diǎn)集,這類單參數(shù)映射芽所含有的變量相互獨(dú)立,于是可以討論一般的映射芽在孤立奇點(diǎn)處的分支個(gè)數(shù),通過(guò)得到的分支個(gè)數(shù)的拓?fù)涠裙絹?lái)表述出分歧模型的半解支個(gè)數(shù),從而得出Banach空間中分歧問(wèn)題在分歧點(diǎn)處的分支數(shù)目的拓?fù)涠裙?本文是奇點(diǎn)理論在分歧理論上的應(yīng)用,也是對(duì)非線性偏微分方程分歧問(wèn)題的有益的探索與嘗試.第一章是引言部分,簡(jiǎn)要介紹與本課題相關(guān)的奇點(diǎn)與分歧理論的歷史研究概況,以及本課題的研究動(dòng)機(jī)、目的和論文的結(jié)構(gòu).在第二章,定義了區(qū)域Ω的k-非退化條件,討論了k-非退化條件的等價(jià)條件,建立了(m,k)-分歧模型,運(yùn)用奇點(diǎn)理論證明了(m.k)-分歧模型與Lyapunov-Schmidt約化所得分歧方程的等價(jià)性.在第三章,對(duì)于k-非退化區(qū)域上的分歧模型,考慮分歧點(diǎn)處分支解的個(gè)數(shù)問(wèn)題,得出了半解支個(gè)數(shù)的拓?fù)涠扔?jì)算公式,計(jì)算出幾類特殊的二元分歧模型在平面上不同位置處的具體的半解支個(gè)數(shù).在第四章,給出了n維矩體上的一類含有Laplace算子的偏微分方程的分歧模型的表達(dá)公式,對(duì)此表達(dá)公式進(jìn)行退化檢驗(yàn),在2維矩形和3維矩體上更精確的給出了不同分歧點(diǎn)處的分歧模型,運(yùn)用此模型討論了這些分歧點(diǎn)的分歧類型和分歧點(diǎn)處的半解支個(gè)數(shù).除了n維矩體之外,在第五章,簡(jiǎn)略的給出在圓盤、扇形、同心圓環(huán)、球體、同心球殼、2維球面、環(huán)面以及等邊三角形等特殊區(qū)域上的分歧模型.非線性問(wèn)題的可能分歧點(diǎn)是其線性化問(wèn)題的奇點(diǎn),在第六章,運(yùn)用非線性分析算子廣義逆方法,給出Banach流形中非線性算子的局部線性化定理.
[Abstract]:In this paper, the singular point theory is combined with the nonlinear analysis method and applied to the bifurcation theory in infinite dimensional Banach space. The problem of judging and identifying the bifurcation points in the single parameter nonlinear bifurcation theory is studied. The bifurcation phenomenon of a class of partial differential equations in infinite dimensional Banach spaces is similar to the finitely deterministic idea of smooth mapping. A bifurcation model consisting of 00:00 sets of finite weighted homogeneous polynomial functions is established to describe the bifurcation phenomenon. The bifurcation model is used to discuss whether multiple eigenvalues are bifurcation points and the recognition of bifurcation types. The bifurcation model in this paper is a kind of singular point set of mapping buds induced by nonlinear problems. The variables contained in this kind of one-parameter mapping germs are independent of each other, so we can discuss the number of branches of general mapping germs at isolated singularities. The number of semi-solution branches of the bifurcation model can be expressed by the topological degree formula of the number of branches obtained. The topological degree formula of the number of bifurcation problems at bifurcation points in Banach spaces is obtained. This paper is an application of singular point theory to bifurcation theory. It is also a useful exploration and attempt for the bifurcation problem of nonlinear partial differential equations. The first chapter is the introduction, which briefly introduces the historical research situation of singularity and bifurcation theory related to this topic, as well as the motivation of the research. In chapter 2, we define the k-nondegenerate condition of domain 惟, discuss the equivalent condition of k-nondegenerate condition, and establish a k-degenerate model. By using singularity theory, we prove the equivalence between the bifurcation model and the bifurcation equation obtained by Lyapunov-Schmidt reduction. In Chapter 3, we consider the number of bifurcation solutions for the bifurcation model on k-nondegenerate domain. The topological degree calculation formula of the number of semi-solution branches is obtained, and the specific number of half-solution branches at different positions of several special binary bifurcation models on the plane is calculated. In Chapter 4th, In this paper, the expression formulas of a class of partial differential equations with Laplace operator on n-dimensional moment are given, and the degeneracy test is carried out. The bifurcation models at different bifurcation points are given more accurately on 2-dimensional rectangular and 3-dimensional moment bodies. By using this model, we discuss the bifurcation types of these bifurcation points and the number of half-solution branches at the bifurcation points. In Chapter 5th, in addition to n-dimensional moment bodies, we briefly give 2-dimensional spherical surfaces in disk, sector, concentric ring, sphere and concentric spherical shell. Bifurcation models on special domains such as torus and equilateral triangles. The possible bifurcation points of nonlinear problems are singularities of their linearization problems. In Chapter 6th, the generalized inverse method of nonlinear analysis operator is used. The local linearization theorem of nonlinear operators in Banach manifolds is given.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O177

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄭勝德;;非退化混合整數(shù)線性規(guī)劃的一種解法[J];武漢鋼鐵學(xué)院學(xué)報(bào);1985年03期

2 張彩環(huán),行紅明;幾類非退化k-部分拆問(wèn)題的研究[J];洛陽(yáng)師范學(xué)院學(xué)報(bào);2003年05期

3 王如山;;具有平行非退化極小截面曲面的一個(gè)定理[J];安徽師大學(xué)報(bào)(自然科學(xué)版);1992年04期

4 畢耜琨;;k-非退化簡(jiǎn)單固有值的分歧[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年01期

5 王如山;空間形式中具平行非退化極小截面的曲面[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2000年01期

6 王朝珠,王恩平;多變量線性反饋系統(tǒng)的非退化條件和物理能實(shí)現(xiàn)性[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1982年09期

7 楊新建;非退化擴(kuò)散過(guò)程的極性與相交性[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2003年02期

8 王仲才;;關(guān)于凸曲面上非退化光滑函數(shù)臨界點(diǎn)的數(shù)量特征[J];江西廣播電視大學(xué)學(xué)報(bào);2006年04期

9 王如山,姚靜蓀;具有平行非退化截面的極小曲面[J];數(shù)學(xué)研究;2000年01期

10 吳小平;非退化二次曲線一個(gè)定理的解析證明[J];重慶師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2003年01期

相關(guān)博士學(xué)位論文 前2條

1 李強(qiáng);非退化區(qū)域上的分歧模型[D];東北師范大學(xué);2016年

2 苗宇;具有非退化變系數(shù)Schr(?)dinger方程的研究[D];復(fù)旦大學(xué);2008年

相關(guān)碩士學(xué)位論文 前3條

1 王軍;Allen-Cahn方程對(duì)稱解的非退化性[D];華北電力大學(xué);2015年

2 匡能暉;關(guān)于非退化擴(kuò)散過(guò)程的幾點(diǎn)注記[D];湖南師范大學(xué);2003年

3 呂書龍;最小一乘估計(jì)快速算法的研究[D];福州大學(xué);2003年

,

本文編號(hào):1509682

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1509682.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a1647***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com