LHAASO WCDA前端讀出電子學(xué)的研究
本文關(guān)鍵詞:LHAASO WCDA前端讀出電子學(xué)的研究 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 大型高海拔空氣簇射觀測(cè)站 水契倫科夫探測(cè)器陣列 光電倍增管 前端讀出電子學(xué) 電荷測(cè)量 時(shí)間測(cè)量
【摘要】:大型高海拔空氣簇射觀測(cè)站(Large High Altitude Air Shower Observatory,縮寫(xiě)為L(zhǎng)HAASO)是中國(guó)"國(guó)家發(fā)改委十二五規(guī)劃"中計(jì)劃建設(shè)的大型科學(xué)裝置。LHAASO共包含五種探測(cè)器陣列,對(duì)能量在1011~1015eV的廣延大氣簇射(Extensive Air Shower,縮寫(xiě)為EAS)進(jìn)行連續(xù)測(cè)量。水契倫科夫探測(cè)器陣列(Water Cherenkov Detector Array,縮寫(xiě)為 WCDA)是 LHAASO 中的一個(gè)重要的子探測(cè)器,由分布在三個(gè)水池內(nèi)的3120個(gè)光電倍增管(photomultipliertube,縮寫(xiě)為PMT)組成。PMT接收廣延大氣簇射次級(jí)粒子在水中產(chǎn)生的契倫科夫光并輸出電信號(hào),前端電子學(xué)模塊(Front-end Electronics,縮寫(xiě)為FEE)接收PMT輸出信號(hào)并完成電荷和時(shí)間測(cè)量,測(cè)量結(jié)果用來(lái)重建原始入射粒子的種類和入射方向。WCDA讀出電子學(xué)基于分布式構(gòu)架設(shè)計(jì),FEE就近PMT放置,進(jìn)行時(shí)間和電荷測(cè)量并完成數(shù)字化,數(shù)據(jù)結(jié)果進(jìn)一步通過(guò)光纖長(zhǎng)距傳輸至后端DAQ(DataAcquisition)。本論文研究主要集中在模擬電子學(xué)的設(shè)計(jì)上,著重研究了大動(dòng)態(tài)范圍情況下PMT信號(hào)的時(shí)間和電荷測(cè)量技術(shù),基于計(jì)算分析、仿真結(jié)合試驗(yàn)驗(yàn)證的方法提出了最優(yōu)化的電荷測(cè)量電路結(jié)構(gòu),并確認(rèn)了電路的關(guān)鍵設(shè)計(jì)參數(shù);在時(shí)間測(cè)量方面,在已有的FPGA(Field Program Gate Array)TDC(Time-to-Digital Converter)工作基礎(chǔ)上,進(jìn)一步優(yōu)化設(shè)計(jì)提升了其精度指標(biāo)。此外,考慮到工程實(shí)施的需求,在FEE中還設(shè)計(jì)了自動(dòng)標(biāo)定電路,實(shí)現(xiàn)了電路參數(shù)的自動(dòng)標(biāo)定等功能。在上述研究基礎(chǔ)上,進(jìn)行了工程樣機(jī)的實(shí)際制作和系統(tǒng)測(cè)試。電子學(xué)測(cè)試結(jié)果表明,該工程樣機(jī)在單光電子(Single Photoelectron,S.P.E.)處電荷測(cè)量精度好于8%,在4000P.E.處電荷測(cè)量精度好于1%;整個(gè)動(dòng)態(tài)范圍內(nèi)的時(shí)間測(cè)量精度好于300 psRMS,均好于工程應(yīng)用需求。最后,將工程樣機(jī)分別與兩種PMT進(jìn)行了聯(lián)合測(cè)試,測(cè)試結(jié)果均符合物理預(yù)期。此外,本論文還進(jìn)一步探索了一種基于基線恢復(fù)技術(shù)的改進(jìn)型前沿定時(shí)電路,在保證測(cè)量精度等性能的同時(shí)大大減小了電路死時(shí)間,為類似大動(dòng)態(tài)范圍下高精度定時(shí)電路提供了設(shè)計(jì)參考。本論文工作還基于本實(shí)驗(yàn)自主研發(fā)的放大成形電路(Pre-Amplifier and Shaping Circuit,縮寫(xiě)為PASC)芯片完成了另一種FEE原型電路的設(shè)計(jì)。此技術(shù)的優(yōu)點(diǎn)是可簡(jiǎn)化前端模擬電路的復(fù)雜度。研究中也對(duì)該電路進(jìn)行了初步的電子學(xué)測(cè)試以及與PMT的聯(lián)合測(cè)試。本論文結(jié)構(gòu)安排如下:第一章介紹了 LHAASO WCDA實(shí)驗(yàn),并給出了 FEE的設(shè)計(jì)指標(biāo)需求;第二章調(diào)研了目前主流的電荷和時(shí)間測(cè)量方法,并結(jié)合典型的應(yīng)用實(shí)例對(duì)相關(guān)技術(shù)方案進(jìn)行了分類和總結(jié),這也是FEE工程樣機(jī)的設(shè)計(jì)參考;第三章主要介紹了 WCDA FEE設(shè)計(jì)中的電荷和時(shí)間測(cè)量方案和技術(shù)路線,包括電路的計(jì)算分析、電路仿真和參數(shù)優(yōu)化;第四章詳細(xì)介紹了 FEE工程樣機(jī)的詳細(xì)電路設(shè)計(jì)與實(shí)現(xiàn),包括放大成形電路、ADC電路、時(shí)間甄別電路、自動(dòng)標(biāo)定電路以及相應(yīng)的基于FPGA的數(shù)字處理邏輯等;第五章主要介紹了 FEE工程樣機(jī)的電子學(xué)測(cè)試結(jié)果。測(cè)試結(jié)果表明,各項(xiàng)性能指標(biāo)均滿足工程需求;第六章使用兩種PMT與FEE原型樣機(jī)進(jìn)行了聯(lián)合測(cè)試。測(cè)試結(jié)果均符合物理預(yù)期;第七章為論文的總結(jié)和展望。
[Abstract]:Large high altitude air shower Observatory (Large High Altitude Air Shower Observatory, abbreviated as LHAASO) is China "12th Five-Year national development and Reform Commission Plan" plans to build large-scale scientific device.LHAASO contains a total of five kinds of detector array, the energy in the 1011 ~ 1015eV extensive air shower (Extensive Air Shower, abbreviated as EAS) are continuous measuring water Cherenkov detector array (Water Cherenkov Detector Array, abbreviated as WCDA) is one of the most important sub detectors in LHAASO, by doubling the distribution of 3120 in the three photoelectric pool tube (photomultipliertube, abbreviated as PMT) consisting of.PMT received extensive air shower of secondary particles produced in water Cherenkov light and the output signal, the front-end electronics module (Front-end Electronics, abbreviated as FEE) receiving the output signal of the PMT and complete charge and time measurement, the measurement results for heavy Type and direction of.WCDA built the original incident particle readout electronics distributed architecture design based on FEE PMT, the nearest place, time and charge measurement and digital data, results in long-distance transmission through optical fiber to the back-end DAQ (DataAcquisition). This paper studies mainly focus on the design of analog electronics, focuses on the dynamic range conditions of PMT signal time and charge measurement technology, based on the calculation and analysis, put forward the optimization of the structure of charge measurement circuit simulation with the experimental method, and confirmed the key design parameters of the circuit; in time measurement, the FPGA (Field Program Gate Array) TDC (Time-to-Digital Converter) on the basis of the work further, optimization design to enhance its accuracy. In addition, taking into account the implementation of the project needs, the FEE also designed the automatic calibration circuit realization Automatic calibration function of the circuit parameters. On the basis of the above study, the actual production and system engineering prototype test. Electronics test results show that the prototype in single photo electron (Single Photoelectron, S.P.E.) the charge measurement accuracy is better than 8%, at 4000P.E. in the charge measurement accuracy of better than 1%; time measurement the precision of the dynamic range is better than 300 psRMS, were better than the requirement of engineering application. Finally, the engineering prototype with two PMT conducted a joint test, test results comply with physical expectations. In addition, this paper also further explore an improved front timing circuit baseline restoration based on ensure the accuracy of measurement of the performance of the circuit greatly reduces the dead time, provide a reference for the similar large dynamic range and high precision timing circuit. The work of this paper is based on the amplification of independent research and development (Pre-Amplifier and Shaping Circuit shaping circuit, abbreviated as PASC) chip designed another FEE prototype circuit. The advantage of this technique is to simplify the complexity of front-end analog circuit. The circuit of the study also conducted a preliminary test and combined test electronics and PMT. This paper is organized as follows: first the chapter introduces the LHAASO WCDA experiment, and gives the design index requirement of FEE; the second chapter research the charge and time measurement method of the mainstream at present, and the relevant technical schemes are classified and summarized combined with typical examples of application, which is the FEE engineering design reference prototype; the third chapter mainly introduces the charge and time measurement scheme WCDA in FEE design and technology roadmap, including the analysis of circuit calculation, circuit simulation and parameter optimization; the fourth chapter introduces the design and implementation of a detailed circuit FEE engineering prototype Now, including amplification shaping circuit, ADC circuit, time discrimination circuit, automatic calibration circuit and corresponding FPGA digital processing logic and so on; the fifth chapter mainly introduces the test results of FEE electronics engineering prototype. The test results show that the performance indexes meet the requirements of engineering; the sixth chapter uses two PMT and FEE of the prototype the joint test. The test results are in line with physical expectations; the seventh chapter is the summary and outlook of the paper.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O572.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 湯道坦;李得天;柳青;李存惠;秦曉剛;楊生勝;陳益峰;;電子輻照介質(zhì)表面電荷分布測(cè)量研究[J];真空與低溫;2013年02期
2 沈亞勇;張宇翔;趙豫斌;鄒敏;陳少佳;;基于VCO的電荷測(cè)量方法[J];中國(guó)科技信息;2012年09期
3 董克攻;朱斌;吳玉遲;蘇春曉;于瑞珍;谷渝秋;王曉方;;用于激光尾波場(chǎng)中電子束電荷測(cè)量的積分束流儀標(biāo)定[J];強(qiáng)激光與粒子束;2010年12期
4 封常青;劉樹(shù)彬;王進(jìn)紅;安琪;;BESⅢ飛行時(shí)間電子學(xué)電荷測(cè)量電路的溫度補(bǔ)償[J];核電子學(xué)與探測(cè)技術(shù);2009年05期
相關(guān)會(huì)議論文 前2條
1 封常青;劉樹(shù)彬;王進(jìn)紅;安琪;;BESⅢ飛行時(shí)間電子學(xué)電荷測(cè)量電路的溫度補(bǔ)償[A];第十四屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(1)[C];2008年
2 封常青;劉樹(shù)彬;王進(jìn)紅;安琪;;BESⅢ飛行時(shí)間電子學(xué)電荷測(cè)量電路的溫度補(bǔ)償[A];第十四屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 馬聰;LHAASO WCDA前端讀出電子學(xué)的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
2 鄔維浩;LHAASO WCDA中基于電流型TOT技術(shù)的前端讀出ASIC設(shè)計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 徐福珍;光電倍增管大動(dòng)態(tài)范圍電荷測(cè)量電路的研究[D];湖南大學(xué);2016年
2 張宗鑫;溫度對(duì)電聲脈沖法聚合物空間電荷測(cè)量的影響[D];華北電力大學(xué)(北京);2011年
,本文編號(hào):1441493
本文鏈接:http://www.sikaile.net/shoufeilunwen/jckxbs/1441493.html