介孔有機硅雜化納米材料的設計合成與性質(zhì)研究
[Abstract]:Since its synthesis in 1992, mesoporous silica material has been a hot spot for scientists. The mesoporous silica nano-materials have been widely applied to different fields of scientific research because of its nano-scale, unique pore structure and better stability. The mesoporous organic silicon hetero-nano material has the dual functions of organic materials and inorganic mesoporous materials, such as higher specific surface area, larger pore size, uniform adjustable pore size, easy-to-modify inner/ outer surfaces and uniform distribution of organic and inorganic components on the whole framework and the like, and has wide application prospect in the fields of biomedicine, dye loading and release, catalysis and the like. This paper mainly focuses on the design and synthesis of a novel mesoporous organosilicone heterogenous nano-material, which is designed and synthesized with two different synthetic strategies. The method comprises the following steps of: designing a mesoporous organic silicon oxide nano material with different symmetry and different pore channel structures by using a simple ethyl group bridging organic silicon precursor; and II, jointly hydrolyzing and polymerizing a silicon precursor containing an amino group and a hydroxyl group and an inorganic silicon precursor, Organic functionalized mesoporous silica nano-materials with different morphology are designed and synthesized. The thesis mainly gains the following research results: 1. A simple and controllable symmetric/ asymmetric coating method is designed. By using the core-shell structure of the Au@SiO_2 nanoparticles as seeds, the periodic mesoporous organic silicon oxide (PMO) nanostructures with different morphologies are prepared, including the AuPMO of the asymmetric (Janus) structure. The Au@PMO of egg yolk-shell structure and the Au@PMO/ m SiO _ 2 nanoparticles of yolk-double shell structure. During the reaction process, ammonia water is first used as an alkaline catalyst to promote the hydrolysis and polymerization of the organic silicon precursor, and then the ammonia water is used as an etching agent to selectively dissolve the SiO2 shell in the Au@SiO_2 nano-particles to form a hollow nano structure. The obtained three kinds of nano-particles have higher specific surface area, larger pore volume and adjustable cavity structure. In addition, the prepared AuPMO and Au@PMO nanoparticles showed good catalytic activity for the decomposition of hydrogen peroxide and reduction of 4-nitrophenols. Due to the unique nanostructure and the composition of the organic-inorganic composite, the PMO and hollow PMO nanoparticles of the Janus structure all exhibit extremely low hemolysis activity, and provide the potential for further application of the mesoporous organic silicon oxide nano-materials in the biological medicine field. By adjusting the volume fraction of ethanol in the reaction system, the transformation of the mesoporous organic silicon oxide nanoparticles from the single mesoporous to the dimesopore structure is achieved by adjusting the volume fraction of ethanol in the reaction system. The double-dielectric porous organic silicon oxide nanoparticles of the core-shell structure have smaller dielectric holes (4.0 nm) on the shell, and have petal-shaped larger dielectric holes (46 nm) in the core. Due to the unique multi-stage dielectric hole structure, the double-porous organic silicon oxide nanoparticles exhibit higher loading and slower release speed in the application of object loading. This is mainly because the large dielectric holes on the inner core can provide large storage space for guest molecules, while smaller dielectric holes on the shell serve as natural valves so that guest molecules stored inside can be released slowly. Moreover, both single and dimesopore organic silicon oxide nanoparticles exhibited lower cytotoxicity and good cell infiltrations. In this paper, a simple and universal method of germination growth is designed, which successfully synthesizes the mesoporous silica nanoparticles with an organic-inorganic composite structure. In the whole synthesis process, periodic mesoporous organic silicon oxide (PMO) nanoparticles were used as seeds, and mesoporous silica (SiO _ 2) was used as a branch to grow on the surface of PMO nanoparticles. The length and quantity of SiO _ 2 branch in Janus mesoporous silica nano-particles can be well controlled by the addition of the inorganic silicon source n-ethyl silicate in the simple regulation reaction system. In addition, the different regions of the Janus mesoporous silica nanoparticles are easily functionalized with different organic groups, the PMO nanoparticles can be modified with amino groups (-NH _ 2), and the sulfonic acid groups (-SO _ 3H) are modified on the SiO _ 2 branch. Janus mesoporous silica nanoparticles with acid-base double catalytic activity are designed in this way. Further catalytic experiments also show that the double functionalized Janus mesoporous silica nanoparticles exhibit excellent catalytic activity in the acid-base deprotected Henry series reaction. By using the simple egg yolk-shell structure nanoparticles as the matrix, it is successfully designed to synthesize the garnet-shaped mesoporous silica nanoparticles, which is composed of a plurality of metal cores and a mesoporous silicon oxide shell of a functionalized poly-silicon group. different kinds of metal nanoparticles (Pd, Pt, Au) can be successfully embedded as the core in the garnet-like nano-structure, and the hydroxyl groups on the shell can be easily oxidized to acidic sulfonic acid groups. Different from the simple yolk-shell structure, the garnet-like nanoparticles have their unique structure and chemical composition, can be used as the nano-reactors, and show good double-functional catalytic activity and cyclic stability in the series reaction of the synthesized heteropoly acid derivatives. In addition, the core and the outer shell in the pomegranate-shaped nano-particles also show excellent catalytic activity in the deprotection reaction of the hydrogenation reduction 4-methoxy-nitrobenzene and the phenyldimethylal, respectively.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TB383.1
【相似文獻】
相關期刊論文 前10條
1 ;納米材料[J];新型建筑材料;2000年09期
2 杜仕國,施冬梅,鄧輝;納米材料的特異效應及其應用[J];自然雜志;2000年02期
3 ;納米材料 新世紀的黃金材料[J];城市技術監(jiān)督;2000年10期
4 ;什么是納米材料[J];中國粉體技術;2000年05期
5 鄒超賢;納米材料的制備及其應用[J];廣西化纖通訊;2000年01期
6 吳祖其;納米材料[J];光源與照明;2000年03期
7 ;納米材料的特性與應用方向[J];河北陶瓷;2000年04期
8 沈青;納米材料的性能[J];江蘇陶瓷;2000年01期
9 李良訓;納米材料的特性及應用[J];金山油化纖;2000年01期
10 劉冰,任蘭亭;21世紀材料發(fā)展的方向—納米材料[J];青島大學學報(自然科學版);2000年03期
相關會議論文 前10條
1 王少強;邱化玉;;納米材料在造紙領域中的應用[A];'2006(第十三屆)全國造紙化學品開發(fā)應用技術研討會論文集[C];2006年
2 宋云揚;余濤;李艷軍;;納米材料的毒理學安全性研究進展[A];2010中國環(huán)境科學學會學術年會論文集(第四卷)[C];2010年
3 ;全國第二屆納米材料和技術應用會議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
4 鐘家湘;葛雄章;劉景春;;納米材料改造傳統(tǒng)產(chǎn)業(yè)的實踐與建議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
5 高善民;孫樹聲;;納米材料的應用及科研開發(fā)[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
6 ;全國第二屆納米材料和技術應用會議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(下卷)[C];2001年
7 金一和;孫鵬;張穎花;;納米材料的潛在性危害問題[A];中國毒理學通訊[C];2001年
8 張一方;呂毓松;任德華;陳永康;;納米材料的二種制備方法及其特征[A];第四屆中國功能材料及其應用學術會議論文集[C];2001年
9 古宏晨;;納米材料產(chǎn)業(yè)化重大問題及共性問題[A];納米材料和技術應用進展——全國第三屆納米材料和技術應用會議論文集(上卷)[C];2003年
10 馬玉寶;任憲福;;納米科技與納米材料[A];納米材料和技術應用進展——全國第三屆納米材料和技術應用會議論文集(上卷)[C];2003年
相關重要報紙文章 前10條
1 記者 周建人;我國出臺首批納米材料國家標準[N];中國建材報;2005年
2 記者 王陽;上海形成納米材料測試服務體系[N];上海科技報;2004年
3 ;納米材料七項標準出臺[N];世界金屬導報;2005年
4 通訊員 韋承金邋記者 馮國梧;納米材料也可污染環(huán)境[N];科技日報;2008年
5 廖聯(lián)明;納米材料 利弊皆因個頭小[N];健康報;2009年
6 盧水平;院士建議開展納米材料毒性研究[N];中國化工報;2009年
7 郭良宏 中國科學院生態(tài)環(huán)境研究中心研究員 江桂斌 中國科學院院士;納米材料的環(huán)境應用與毒性效應[N];中國社會科學報;2010年
8 記者 任雪梅 莫璇;中科院納米材料產(chǎn)業(yè)園落戶佛山[N];佛山日報;2011年
9 實習生 高敏;納米材料:小身材涵蓋多領域[N];科技日報;2014年
10 本報記者 李軍;納米材料加速傳統(tǒng)行業(yè)升級[N];中國化工報;2013年
相關博士學位論文 前10條
1 楊楊;功能化稀土納米材料的合成及其生物成像應用[D];復旦大學;2014年
2 王艷麗;基于氧化鈦和氧化錫納米材料的制備及其在能量存儲中的應用[D];復旦大學;2014年
3 吳勇權;含銪稀土納米材料的功能化及其生物成像應用研究[D];復旦大學;2014年
4 曹仕秀;二硫化鎢(WS_2)納米材料的水熱合成與光吸收性能研究[D];重慶大學;2015年
5 廖蕾;基于功能納米材料的電化學催化研究[D];復旦大學;2014年
6 胥明;一維氧化物、硫化物納米材料的制備,功能化與應用[D];復旦大學;2014年
7 李淑煥;納米材料親疏水性的實驗測定與計算預測[D];山東大學;2015年
8 范艷斌;亞細胞水平靶向的納米材料的設計、制備與應用[D];復旦大學;2014年
9 丁泓銘;納米粒子與細胞相互作用的理論模擬研究[D];南京大學;2015年
10 駱凱;基于金和石墨烯納米材料的生物分子化學發(fā)光新方法及其應用[D];西北大學;2015年
相關碩士學位論文 前10條
1 向蕓頡;卟啉納米材料的制備及其應用研究[D];重慶大學;2010年
2 劉武;層狀納米材料/聚合物復合改性瀝青的制備與性能[D];華南理工大學;2015年
3 劉小芳;基于納米材料/聚合膜材料構建的電化學傳感器應用于生物小分子多組分的檢測[D];西南大學;2015年
4 王小萍;基于金納米材料構建的電化學傳感器及其應用[D];上海師范大學;2015年
5 郭建華;金納米材料的修飾及其納米生物界面的研究[D];河北大學;2015年
6 魏杰;普魯士藍納米粒子的光熱毒性研究[D];上海師范大學;2015年
7 張華艷;改性TiO_2納米材料的制備及其光電性能研究[D];河北大學;2015年
8 胡雪連;基于納米材料的新型熒光傳感體系的構筑[D];江南大學;2015年
9 黃樊;氧化鈷基催化材料形貌、晶面控制與催化性能研究[D];昆明理工大學;2015年
10 周佳林;新型核殼結構金納米材料用于腫瘤的近紅外光熱治療研究[D];浙江大學;2015年
,本文編號:2289227
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/2289227.html