功能梯度材料二維熱彈性接觸失穩(wěn)分析
[Abstract]:When there is heat flow and / or relative sliding between two elastomers, the contact thermal resistance / friction heat on the contact surface will cause the non-uniform distribution of the temperature field and contact pressure, which will lead to the non-uniform thermoelastic deformation of the contact surface. The non-uniform thermoelastic deformation will aggravate the non-uniform distribution of temperature field and contact pressure. When the heat flux and sliding velocity reach a certain value, the temperature and pressure distribution of the system will fluctuate violently under any small disturbance, which will make the system lose its stability and cause the self-excited oscillation instability. It is called thermoelastic contact instability. Generally, thermoelastic contact instability can be divided into two categories, one is static thermoelastic instability caused by thermal contact resistance, and the other is friction thermoelastic instability caused by friction sliding. In most cases, these two kinds of instability exist simultaneously and are coupled to each other, which is called coupled thermoelastic contact instability. The thermoelastic contact instability is easy to occur in the braking system of high speed train, automobile and aircraft, which is represented by the formation of heat spot on the friction pair, which eventually leads to the failure of the braking system. A large number of theoretical and experimental studies have shown that the application of functionally graded materials to surface coating can improve the resistance of structural members to indentation, invasion, friction, sliding and rolling. The ability of fretting fatigue and associated wear processes to cause contact and friction damage. In this paper, the two-dimensional thermoelastic contact instability of functionally graded materials is studied theoretically, and the feasibility of using functionally graded materials to improve the thermoelastic contact stability of static / sliding systems is discussed. The main contents and conclusions are as follows: (1) the two-dimensional static thermoelastic contact instability problem between the functional gradient layer and the uniform layer varying exponentially along the thickness direction is studied by using the perturbation method, and the static thermoelastic contact instability criterion is established. The results show that the static thermoelastic contact stability of the system can be effectively improved by adjusting the gradient index and thickness of the gradient layer. (2) it is assumed that the physical parameters of the gradient coating vary continuously in the form of arbitrary function along the thickness direction. By using laminated plate model, perturbation method and matrix transfer method, the two-dimensional coupled thermoelastic contact instability problem of half-plane anti-plane sliding system with functionally gradient coating is solved. The results show that the coupling thermoelastic contact stability of anti-plane sliding system can be effectively adjusted by choosing the appropriate gradient variation type. It is also found that the influence of the gradient of thermal diffusion coefficient on the thermoelastic contact stability of the system can not be ignored. (3) the two-dimensional thermoelastic contact instability of the functionally graded material in-plane sliding system is further studied. The friction thermoelastic contact instability and coupled thermoelastic contact instability of functionally graded materials are studied by assuming that the physical parameters of functionally graded materials vary in exponential form and arbitrary function along the thickness direction respectively. The results show that the thermal elastic contact stability of the sliding system is sensitive to the gradient exponent of the thermal parameters, but not to the gradient exponents of the elastic parameters. The influence of gradient on the critical instability state of coupled thermoelastic contact is related to the flow direction of the contact surface. Through the relevant theoretical research, not only the theoretical study of thermal elastic contact problem of functionally graded materials is perfected, but also the optimization design and engineering application of functionally graded materials aiming at improving the thermoelastic contact stability are greatly improved. It provides an important theoretical basis and technical reserve for the design and manufacture of high speed train braking system.
【學位授予單位】:北京交通大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TB34
【相似文獻】
相關期刊論文 前10條
1 陳傳福;聚酯-聚醚熱塑彈性體熱彈性的研究[J];合成纖維;1981年03期
2 陳根度;;蘇《生膠與橡皮》1972年第五期主要內容簡介[J];橡膠參考資料;1972年06期
3 舒小平;復合材料層合板殼熱彈性動力響應[J];復合材料學報;1997年02期
4 歐志英;馬連生;李世榮;;多涂層各向異性短纖維復合材料熱彈性解[J];蘭州大學學報(自然科學版);2007年02期
5 徐亮工;纏繞玻璃鋼管道的殘余熱應力[J];玻璃鋼/復合材料;1997年01期
6 夏軍勇;胡友民;吳波;史鐵林;;熱彈性效應分析與機床進給系統(tǒng)熱動態(tài)特性建模[J];機械工程學報;2010年15期
7 何陵輝,成振強;涂層球粒復合材料熱彈性的特定性質[J];力學學報;1996年05期
8 董興建,孟光;壓電結構的熱彈性比擬建模方法[J];應用力學學報;2005年03期
9 寧志華,劉又文;彈性橢圓夾雜的線性溫變問題[J];應用力學學報;2004年04期
10 侯治宇;熱篩熱應力和動應力分析數學模型的建立[J];中國礦業(yè);2000年S1期
相關會議論文 前10條
1 李世榮;馬連生;;熱彈性結構非線性穩(wěn)定性及振動分析[A];慶祝中國力學學會成立50周年暨中國力學學會學術大會’2007論文摘要集(上)[C];2007年
2 黃汝超;陳永強;黃筑平;;計及表面效應的球形夾雜熱彈性復合材料的有效性質[A];北京力學會第十六屆學術年會論文集[C];2010年
3 黃汝超;陳永強;黃筑平;;計及界面效應的熱彈性復合材料有效性質[A];北京力學會第十六屆學術年會論文集[C];2010年
4 姜燕;孫玉鑫;楊嘉陵;;疊層圓板諧振器軸對稱振動的熱彈性衰減[A];北京力學會第18屆學術年會論文集[C];2012年
5 閻軍;楊素霞;胡文波;楊春秋;;熱彈性點陣結構熱應力多尺度分析及尺寸效應研究[A];中國力學大會——2013論文摘要集[C];2013年
6 田曉耕;沈亞鵬;;廣義壓電熱彈性問題研究[A];2006年全國固體力學青年學者研討會論文摘要文集[C];2006年
7 徐業(yè)鵬;宋明明;;機械荷載與熱荷載共同作用下變厚度梁的二維熱彈性分析[A];中國計算力學大會'2010(CCCM2010)暨第八屆南方計算力學學術會議(SCCM8)論文集[C];2010年
8 王明斌;李術才;趙峰;;含界面層圓形夾雜的平面熱彈性問題[A];第六屆中國功能材料及其應用學術會議論文集(10)[C];2007年
9 吳迪;趙寶生;;柱面受溫度載荷的軸對稱橫觀各向同性壓電熱彈性圓柱的精化理論[A];北京力學會第19屆學術年會論文集[C];2013年
10 趙寶生;高陽;趙穎濤;;軸對稱橫觀各向同性熱彈性圓柱的精化理論[A];現代數學和力學(MMM-XI):第十一屆全國現代數學和力學學術會議論文集[C];2009年
相關博士學位論文 前5條
1 毛佳佳;功能梯度材料二維熱彈性接觸失穩(wěn)分析[D];北京交通大學;2017年
2 李瑩;孔隙熱彈性結構的線性和非線性靜動力學特性研究[D];上海大學;2011年
3 趙家昕;換擋離合器接合過程熱彈性不穩(wěn)定性研究[D];北京理工大學;2014年
4 童杰;各向同性熱彈性材料的二維新型通解和格林函數的研究[D];湖南大學;2014年
5 白會娟;導電材料結構電磁熱彈性多場行為的理論研究[D];蘭州大學;2010年
相關碩士學位論文 前10條
1 李亮杰;有限變形下非均質材料的力學及熱彈性隨機均化分析[D];西安電子科技大學;2015年
2 唐禮;基于內聚力和裂紋段模型的熱彈性斷裂力學的無網格方法[D];中原工學院;2017年
3 譚育新;基于多邊形流形元法的均質材料熱彈性問題研究[D];南昌航空大學;2017年
4 王鵬飛;基于有限差分法的廣義熱彈性問題研究[D];南京理工大學;2010年
5 郭麗娟;壓電熱彈性軸對稱問題[D];湖南大學;2006年
6 駱偉;電磁熱彈性三維通解及其應用[D];湖南大學;2007年
7 王力;正交各向異性熱彈性材料、壓電熱彈性材料和電磁熱彈性材料的二維通解和基本解及其應用[D];湖南大學;2008年
8 鄧佳東;耦合熱彈性問題結構材料并發(fā)拓撲優(yōu)化[D];大連理工大學;2012年
9 賈維維;熱波效應下彈性體的多物理場耦合行為分析[D];蘭州理工大學;2009年
10 肖春;含界面缺陷圓形夾雜平面熱彈性問題的幾個基本解[D];湖南大學;2005年
,本文編號:2229246
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/2229246.html