基于27.5kV直掛式級(jí)聯(lián)型APF的電氣化鐵路電能質(zhì)量治理技術(shù)研究
[Abstract]:In the operation of electrified railway, due to the special power supply mode of the traction power supply system and the complex and changeable operating conditions of the locomotive, the locomotive load produces a lot of reactive power and harmonics, which leads to the low power factor of the traction power supply system, the serious wave distortion and the large voltage fluctuation, which not only increases the loss of electric energy and reduces energy. Using efficiency, it also threatens the safety and stability of traction power supply system and locomotive load in electrified railway, and even causes electrical equipment damage, triggering power supply and driving accidents, causing great loss of state economy. Therefore, effective measures must be taken to compensate and control the electric power quality of electrified railway, and this paper puts forward this paper. Based on the active compensation scheme of 27.5 kV straight cascaded active power filter (APF), the key problems in the implementation of the scheme are studied. This paper first analyzes the electrical characteristics of the EMU on the grid side of the typical alternating and direct AC type electric locomotives of the electrified railway, and through a large number of locomotive load measured data in detail. The reactive power and harmonic characteristics of the locomotive load are analyzed. In addition, according to the data on the field monitoring in the traction substation, the reactive power and harmonic level of the traction bus are analyzed. It shows the urgency of the power quality control of the electrified railway, and provides the basic data for the parameters design of the active compensation system. In the pilot project, this paper summarizes the existing measures for the power quality control of electrified railway, and on the basis of this, a direct hanging cascaded APF is proposed to dynamically control the reactive power and harmonic power quality of electrified railway. For typical traction power supply modes, such as the direct power supply of 27.5 kV power supply with YNd11 and single-phase Vv transformer as the main power supply. The mode, as well as the 2 x 27.5 kV and 55 kV power supply voltage autotransformer (AT) power supply mode, this paper analyzes the cascaded APF realization scheme, the working principle and the system configuration structure, and studies the fundamental active current of different active compensation schemes under different traction power supply modes, the circulation circuit of the fundamental wave reactive current and the harmonic current and so on. The cascade type APF The main circuit is complex and the system is huge, and the corresponding control system is complex and heavy. Therefore, this paper analyzes the ip-iq reference current detection algorithm, the sliding window iterative DFT detection algorithm and the adaptive cancellation detection algorithm with two weights. Based on the analysis of the above detection algorithm, this paper analyzes the space resources and the less time resource consumption. In view of the fluctuation of locomotive load, an improved ip-iq detection algorithm and a single phase harmonic current detection algorithm without phase-locked loop are proposed to improve the detection precision of dynamic load, the response speed and the avoidance of the influence of phase locked loop error on the detection performance. This paper studies the voltage and current integrated control strategy of cascade multilevel converters. In DC voltage control, a mathematical model based on instantaneous energy balance is derived and the parameter tuning method of the global DC voltage control is analyzed. Two comprehensive control strategies are proposed for current tracking control, namely the instantaneous current control strategy based on the deadbeat and quasi resonant control and the direct current control strategy based on D and decoupling. The error free control can deduce accurate mathematical formula based on the system model and have the function of predicting the reference current signal. The quasi resonant control can realize the non error tracking of the AC signal, improve the control precision of the basic wave current, and apply the instantaneous current control combined by the two parties to the direct current control strategy based on the DQ decoupling based on the high power APF. The power supply current is directly used as the control object, which can reduce the number of analog acquisition and save the reference current detection link. It is especially suitable for the application environment of multi feeder line in electrified railway. Based on the principle of vector reconfiguration and pulse exchange, this paper analyzes the principle of two kinds of DC voltage equilibrium control algorithms. The simulation results show the correctness of the above control algorithm. In this paper, the traction power supply mode, the typical steady state of the locomotive load, the transient characteristics and the traction network voltage distortion are considered, and the software simulation model of the active compensation system is established. It is verified that the active compensation system has good reactive power and harmonic compensation ability. On the basis, we build a laboratory small power test prototype, plan the overall function frame of the control system, complete the design of the centralized digital control system, and verify the correctness of the control system through the experiment. It has valuable guidance value for the engineering practice. In the pilot project, the 27.5 kV high power APF engineering machine is debugged and the active complement is verified. The correctness and effectiveness of the main circuit, control circuit and control strategy of the compensation system show that the compensation system has good reactive power compensation and harmonic suppression effect.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U223.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮金柱;世界電氣化鐵路的發(fā)展[J];電氣化鐵道;2001年04期
2 米子;我國(guó)“十五”期間將建設(shè)和改造8000公里電氣化鐵路[J];中國(guó)建設(shè)信息;2001年28期
3 ;“十五”期間我國(guó)將建設(shè)8000公里電氣化鐵路[J];電力機(jī)車技術(shù);2002年02期
4 ;我國(guó)電氣化鐵路突破兩萬(wàn)公里[J];鐵道機(jī)車車輛;2006年03期
5 ;新疆首條電氣化鐵路2008年有望提前貫通[J];巖土工程界;2008年02期
6 ;中國(guó)電氣化鐵路里程躍居世界第一[J];市政技術(shù);2013年04期
7 ;歐洲各國(guó)電氣化鐵路[J];機(jī)車電傳動(dòng);1976年01期
8 俞紹麒;;當(dāng)前美國(guó)電氣化鐵路的處境[J];鐵道科技動(dòng)態(tài);1976年17期
9 張欣元;;歐洲電氣化鐵路路網(wǎng)的擴(kuò)展[J];鐵道科技動(dòng)態(tài);1979年02期
10 許振帆 ,諸均安;我國(guó)電氣化鐵路建設(shè)概況[J];鐵道學(xué)報(bào);1980年04期
相關(guān)會(huì)議論文 前10條
1 邵立典;;電氣化鐵路改造后給車站帶來(lái)的變化及對(duì)策[A];2008年科技學(xué)術(shù)研討年提速安全與和諧鐵路論文集[C];2008年
2 鄧慧敏;;中國(guó)電氣化鐵路發(fā)展戰(zhàn)略[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
3 畢繼紅;周占學(xué);;電氣化鐵路中索的非線性有限元分析[A];第二屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2002年
4 殷建剛;陳邦達(dá);;湖北電氣化鐵路供電運(yùn)行情況及對(duì)系統(tǒng)影響的分析[A];2006中國(guó)電力系統(tǒng)保護(hù)與控制學(xué)術(shù)研討會(huì)論文集[C];2006年
5 種衍師;;京滬電氣化鐵路牽引站對(duì)山東棗莊電網(wǎng)的影響[A];山東電機(jī)工程學(xué)會(huì)第十二屆優(yōu)秀論文匯編[C];2011年
6 ;中國(guó)電氣化鐵路里程躍居世界第一[A];2014中國(guó)城市地下空間開(kāi)發(fā)高峰論壇論文集[C];2014年
7 ;中國(guó)電氣化鐵路里程躍居世界第一[A];成都市“兩快兩射”快速路系統(tǒng)工程論文專輯[C];2014年
8 李漢卿;;1種新型電氣化鐵路用27.5kV氣體絕緣開(kāi)關(guān)柜[A];電氣化鐵路牽引變電所新技術(shù)年會(huì)論文集[C];2007年
9 柳丹;趙成勇;;考慮電氣化鐵路時(shí)的不平衡度測(cè)量方法研究[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年
10 蘇鵬程;;客運(yùn)專線電氣化鐵路的綜合接地系統(tǒng)[A];鐵路客運(yùn)專線建設(shè)技術(shù)交流會(huì)論文集[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 蕭健;我國(guó)電氣化鐵路總里程突破2萬(wàn)公里[N];中國(guó)經(jīng)濟(jì)導(dǎo)報(bào);2006年
2 雒謙 王健;我國(guó)電氣化鐵路總長(zhǎng)度躍居世界第三[N];經(jīng)理日?qǐng)?bào);2006年
3 記者 矯陽(yáng) 通訊員 王志堅(jiān) 王健;我國(guó)成為第二大電氣化鐵路國(guó)家[N];科技日?qǐng)?bào);2006年
4 王志堅(jiān) 王健;我國(guó)電氣化鐵路里程躍居世界第二[N];人民日?qǐng)?bào);2006年
5 記者 蔣菡 通訊員 王志堅(jiān) 王健;我國(guó)電氣化鐵路步入世界先進(jìn)行列[N];工人日?qǐng)?bào);2008年
6 王志堅(jiān)邋羅瑞軍 王健;我國(guó)步入世界電氣化鐵路先進(jìn)行列[N];科技日?qǐng)?bào);2008年
7 記者趙守民 通訊員曹筱璐;內(nèi)蒙古首條電氣化鐵路開(kāi)通[N];中國(guó)鐵道建筑報(bào);2009年
8 記者 尹傳紅 通訊員 王健 趙剛;我電氣化鐵路繼續(xù)延伸[N];科技日?qǐng)?bào);2001年
9 通訊員 常健剛;成昆電氣化鐵路正式通車[N];光明日?qǐng)?bào);2000年
10 ;電氣化鐵路優(yōu)越性有哪些[N];云南日?qǐng)?bào);2000年
相關(guān)博士學(xué)位論文 前4條
1 吳麗然;基于27.5kV直掛式級(jí)聯(lián)型APF的電氣化鐵路電能質(zhì)量治理技術(shù)研究[D];北京交通大學(xué);2017年
2 王果;電氣化鐵路牽引供電系統(tǒng)綜合有源補(bǔ)償研究[D];蘭州交通大學(xué);2011年
3 張麗艷;新建電氣化鐵路對(duì)電網(wǎng)電能質(zhì)量影響的預(yù)測(cè)與對(duì)策分析研究[D];西南交通大學(xué);2012年
4 趙彥靈;電氣化鐵路同相供電裝置關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 李熹;電氣化鐵路牽引供電系統(tǒng)可靠性分析[D];蘭州交通大學(xué);2015年
2 張一帆;電氣化鐵路對(duì)內(nèi)蒙古電網(wǎng)影響綜合治理研究[D];華北電力大學(xué);2015年
3 蔡雨昌;電氣化鐵路新型電纜供電系統(tǒng)可靠性研究[D];西南交通大學(xué);2016年
4 羅浩元;電氣化鐵路電能質(zhì)量綜合補(bǔ)償系統(tǒng)控制策略研究[D];湘潭大學(xué);2016年
5 周末;基于三相四開(kāi)關(guān)變流器的電氣化鐵路有源補(bǔ)償研究[D];蘭州交通大學(xué);2016年
6 王輝;電氣化鐵路長(zhǎng)距離供電技術(shù)方案研究[D];西南交通大學(xué);2017年
7 鄭紀(jì)偉;電氣化鐵路與風(fēng)電集中接入電網(wǎng)的仿真研究[D];西南交通大學(xué);2017年
8 李坤鵬;電氣化鐵路功率調(diào)節(jié)器的研究[D];哈爾濱工業(yè)大學(xué);2013年
9 汪可;電氣化鐵路對(duì)油氣管道的影響及防護(hù)措施[D];西南交通大學(xué);2013年
10 林磊;電氣化鐵路對(duì)電力系統(tǒng)影響的分析研究[D];浙江大學(xué);2005年
,本文編號(hào):2122969
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/2122969.html