內(nèi)燃機(jī)活塞內(nèi)冷油腔內(nèi)兩相流的流動與換熱機(jī)理研究
本文選題:內(nèi)冷油腔 + 兩相流; 參考:《山東大學(xué)》2017年博士論文
【摘要】:隨著內(nèi)燃機(jī)強(qiáng)化程度的不斷提高,活塞熱負(fù)荷問題凸顯。解決活塞熱負(fù)荷問題已成為內(nèi)燃機(jī)強(qiáng)化提高的瓶頸問題。采用活塞強(qiáng)化冷卻技術(shù)是解決該問題最有效的手段之一。目前,內(nèi)燃機(jī)活塞普遍采用內(nèi)冷油腔結(jié)構(gòu),冷卻油與空氣形成的兩相流在油腔里不斷振蕩可以形成強(qiáng)化換熱的效果。因此,內(nèi)冷油腔內(nèi)兩相流流動和傳熱已成為近年來研究的熱點,但目前缺乏機(jī)理研究。本文致力于活塞的傳熱系統(tǒng)研究,利用計算流體學(xué)基礎(chǔ)和活塞溫度場有限元分析系統(tǒng),在大量試驗數(shù)據(jù)的基礎(chǔ)上創(chuàng)新性的提出了油腔中兩相流循環(huán)特性的若干假設(shè),并建立了噴嘴的噴油模型;通過開發(fā)專門的瞬態(tài)機(jī)油打靶可視化試驗平臺,將試驗結(jié)果結(jié)合有限元模擬、CFD模擬、動力學(xué)分析及推導(dǎo)計算等方法確定出兩相流體傳熱的初始條件和邊界條件,提出了油腔內(nèi)兩相流振蕩流動特性的主要影響因素,建立了帶有修正項的對流換熱準(zhǔn)則關(guān)聯(lián)式,揭示了內(nèi)冷油腔內(nèi)兩相流的流動與換熱的機(jī)理,從而為活塞冷卻系統(tǒng)的設(shè)計優(yōu)化提供了直接可靠的計算依據(jù),并為發(fā)動機(jī)性能的提升奠定了理論基礎(chǔ)。論文的主要研究工作如下:1.內(nèi)冷油腔冷卻噴嘴射流特性研究通過搭建噴嘴噴流試驗臺,對不同噴油壓力和噴油溫度時的冷卻噴嘴噴流進(jìn)行了試驗研究,得出了內(nèi)冷油腔進(jìn)油口捕捉率與噴嘴出口到噴流截面距離之間的關(guān)系。研究發(fā)現(xiàn):噴油壓力越大,噴油溫度越高,噴油油束的發(fā)散角越大,從而影響內(nèi)冷油腔的回流量。另外根據(jù)試驗數(shù)據(jù)計算結(jié)果顯示,冷卻噴嘴噴流為層流射流。在試驗研究的基礎(chǔ)上對噴嘴噴流進(jìn)行仿真計算分析,探討噴嘴噴流壓力、噴流速度和噴流距離、噴流半徑等之間的關(guān)系。模擬結(jié)果顯示:噴口附近核心區(qū)速度的最大值在偏移中心0.2-0.6mm的地方,且隨著壓力增加,核心區(qū)速度最大值的速度梯度增大;隨噴流截面和噴口距離的增加,截面軸心速度的作用越來越小,噴流徑向截面速度的衰減越來越平緩,且噴流截面速度隨噴流徑向截面位置的改變,其分布規(guī)律具有相似性;流體噴入空氣后,距離噴嘴0~28.6mm內(nèi),噴流速度隨距離增加而逐漸衰減,隨著射流的進(jìn)一步發(fā)展,在距離噴口 28.6mm附近,機(jī)油與空氣進(jìn)行的質(zhì)量和能量劇烈交換,截面軸心速度衰減加劇,造成噴流速度急劇下降。另外,研究顯示噴嘴噴油量對內(nèi)冷油腔環(huán)形腔內(nèi)的靜態(tài)填充有很大的影響。最后,建立了冷卻液由噴嘴噴出到油腔入口段的集束層流非淹沒射流模型,得到了流速、流量、噴油壓力、噴嘴半徑以及擴(kuò)展角在各截面處的關(guān)系以及截面軸心速度與噴流距離等的變化規(guī)律。2.內(nèi)冷油腔內(nèi)兩相流動態(tài)特性的試驗研究為了揭示各因素對兩相流流型的影響程度及相應(yīng)的流型轉(zhuǎn)換機(jī)制,采用試驗手段對兩相流的流動形態(tài)進(jìn)行了探討。考慮活塞運動對流動形態(tài)的影響,對內(nèi)冷油腔內(nèi)兩相流流動形態(tài)的形成及轉(zhuǎn)變進(jìn)行理論分析,提出了面積覆蓋率的概念,建立了兩相流流動形態(tài)的預(yù)測模型,并對內(nèi)冷油腔內(nèi)兩相流的傳熱強(qiáng)度進(jìn)行判定。開發(fā)了一種動態(tài)可視化打靶試驗臺,可以實時監(jiān)測內(nèi)冷油腔內(nèi)流體的流動形態(tài)。通過拍攝設(shè)備直接觀測內(nèi)冷油腔內(nèi)兩相流的流動形態(tài),對比出不同轉(zhuǎn)速、噴流壓力、噴流溫度、靜態(tài)填充率、內(nèi)冷油腔大小和截面形狀等條件下內(nèi)冷油腔內(nèi)兩相流流動形態(tài)的變化。結(jié)果顯示:發(fā)動機(jī)轉(zhuǎn)速較低時,內(nèi)冷油腔內(nèi)兩相流以波狀流為主,隨著發(fā)動機(jī)轉(zhuǎn)速增加,“液塞”現(xiàn)象越明顯,發(fā)動機(jī)轉(zhuǎn)速越高,機(jī)油振蕩越劇烈,內(nèi)冷油腔內(nèi)兩相流流動形態(tài)越復(fù)雜;噴油溫度的不同直接導(dǎo)致了機(jī)油粘度的改變。隨著機(jī)油粘度增大,內(nèi)冷油腔內(nèi)流型轉(zhuǎn)變加速,使得內(nèi)冷油腔內(nèi)出現(xiàn)“液塞”現(xiàn)象所需的發(fā)動機(jī)轉(zhuǎn)速降低;內(nèi)冷油腔的截面形狀對其運動形態(tài)影響較大,腰形內(nèi)冷油腔內(nèi)的兩相流分布比較規(guī)律,內(nèi)冷油腔上行時,右側(cè)的機(jī)油比較早的撞向油腔頂部,下行時,則是左側(cè)比較早的撞向底部,橢圓形內(nèi)冷油腔內(nèi)的機(jī)油,形成“液塞”趨勢的位置比較多,而水滴形內(nèi)冷油腔下行時,大多數(shù)循環(huán)中都是靠近內(nèi)冷油腔進(jìn)出油口的機(jī)油先向下形成“液塞”,從而中間形成一個比較大的空氣區(qū)。相比之下,噴油壓力對油腔內(nèi)的流動影響可忽略不計。綜合來看,內(nèi)冷油腔腔內(nèi)兩相流流動形態(tài)的主要影響因素為填充率、油腔形狀和發(fā)動機(jī)轉(zhuǎn)速。3.內(nèi)冷油腔內(nèi)兩相流動態(tài)特性的數(shù)值研究通過CFD計算模型對內(nèi)冷油腔內(nèi)兩相流的流動進(jìn)行仿真計算,對比了不同發(fā)動機(jī)轉(zhuǎn)速、噴流壓力、噴流溫度、內(nèi)冷油腔大小和截面形狀等條件下,內(nèi)冷油腔內(nèi)兩相流的面積覆蓋率及傳熱特性,仿真結(jié)果與試驗結(jié)果吻合良好。結(jié)果表明:內(nèi)冷油腔上下壁面的傳熱系數(shù)隨曲軸轉(zhuǎn)角的變化規(guī)律相反,內(nèi)外壁面的傳熱規(guī)律則呈現(xiàn)一致性;噴油溫度不同,機(jī)油的黏溫特性不同,從而影響內(nèi)冷油腔內(nèi)的面積覆蓋率及其傳熱特性;轉(zhuǎn)速不同,機(jī)油在內(nèi)冷油腔內(nèi)的振蕩強(qiáng)度不同,從而改變內(nèi)冷油腔內(nèi)的湍流強(qiáng)度及其變傳熱特性;油腔結(jié)構(gòu)不同,直接影響機(jī)油填充率及其在往復(fù)運動時對油腔壁面的沖刷程度,從而影響換熱效果。4.內(nèi)冷油腔綜合傳熱模型的建立從工程應(yīng)用的角度出發(fā),結(jié)合試驗研究和數(shù)值模擬結(jié)果,利用管內(nèi)強(qiáng)制對流基礎(chǔ)關(guān)聯(lián)式,在努謝爾特、普朗特和雷諾準(zhǔn)則的基礎(chǔ)上運用最小二乘法擬合出帶有修正項的準(zhǔn)則關(guān)聯(lián)式,建立了瞬時對流傳熱系數(shù)的預(yù)測模型。模型建立過程中發(fā)現(xiàn):對于內(nèi)燃機(jī)活塞內(nèi)冷油腔,發(fā)動機(jī)額定轉(zhuǎn)速內(nèi)隨著發(fā)動機(jī)轉(zhuǎn)速的提高,流體的粘性底層厚度減小;不同缸徑任意發(fā)動機(jī)轉(zhuǎn)速時,粘性底層厚度都大于內(nèi)冷油腔管壁的粗糙度;相同發(fā)動機(jī)轉(zhuǎn)速時,隨缸徑增加,粘性底層厚度減小;雷諾數(shù)和普朗特數(shù)乘積的自然對數(shù)值僅和發(fā)動機(jī)轉(zhuǎn)速有關(guān),而且隨其增加而增大。通過數(shù)值法對假設(shè)條件、忽略因素、非穩(wěn)定性等進(jìn)行影響程度分析,并通過有限元分析結(jié)合硬度塞測溫試驗對關(guān)聯(lián)式計算得到的傳熱系數(shù)進(jìn)行誤差分析,確保計算方法、結(jié)果的準(zhǔn)確性和適用性。結(jié)果顯示,內(nèi)冷油腔傳熱系數(shù)預(yù)測模型可以有效預(yù)測不同發(fā)動機(jī)轉(zhuǎn)速、缸徑、機(jī)油溫度時活塞內(nèi)冷油腔內(nèi)流體的對流傳熱系數(shù),可為活塞內(nèi)冷油腔的設(shè)計提供理論基礎(chǔ)。結(jié)合試驗研究和數(shù)值模擬結(jié)果還可以得知,內(nèi)冷油腔往復(fù)運動時,不同曲軸轉(zhuǎn)角時的傳熱系數(shù)可以在此關(guān)聯(lián)式的基礎(chǔ)上通過壁面的面積覆蓋率進(jìn)行修正。5.內(nèi)冷油腔的換熱特性對活塞可靠性的影響結(jié)合硬度塞測溫試驗,利用有限元分析軟件、疲勞分析軟件和動力學(xué)分析軟件,模擬內(nèi)冷油腔對活塞熱負(fù)荷的影響,分析探討了油腔位置對活塞熱負(fù)荷的影響,內(nèi)冷油腔的設(shè)置對活塞二階運動的影響,以及鑲?cè)?nèi)冷一體新型活塞結(jié)構(gòu)對活塞強(qiáng)度的影響。冷卻效果證明內(nèi)冷油腔的使用可大大降低整個活塞的溫度,而且在結(jié)構(gòu)強(qiáng)度允許的范圍內(nèi),內(nèi)冷油腔在活塞頭部的位置越高,活塞頭部冷卻效果越好,熱負(fù)荷越低。研究還發(fā)現(xiàn),內(nèi)冷油腔的使用可降低活塞運行過程中的變形量,并減小活塞與缸套之間的作用力,從而明顯改善活塞的摩擦磨損、側(cè)向力及裙部壓力等。但是,活塞的二階運動平穩(wěn)性會有所降低,同時也會增大活塞的敲擊噪聲,因此還需要對活塞的裙部型線進(jìn)行相應(yīng)的優(yōu)化。對新型內(nèi)冷油腔結(jié)構(gòu)的研究發(fā)現(xiàn),鑲?cè)?nèi)冷一體的結(jié)構(gòu)能更好的避免應(yīng)力集中現(xiàn)象,既可以通過內(nèi)冷油腔降低整個活塞的熱負(fù)荷,又可以通過使用鑲?cè)硖岣攮h(huán)槽的耐磨性以及第一環(huán)槽和燃燒室的強(qiáng)度。綜合以上研究可以發(fā)現(xiàn),內(nèi)冷油腔的傳熱效率影響了活塞的熱負(fù)荷,內(nèi)冷油腔內(nèi)兩相流的流動形態(tài)與其傳熱規(guī)律有密切聯(lián)系。發(fā)動機(jī)轉(zhuǎn)速、噴油壓力、噴油溫度、內(nèi)冷油腔截面大小等影響因素直接或者間接的影響了兩相流的流動形態(tài),兩相流的流動形態(tài)直接反映了兩相流的分布,決定了液相對內(nèi)冷油腔的有效沖刷面積,表征了傳熱的強(qiáng)度大小。另外,由于模擬計算中沒有考慮軸向平面中氣液界面的變化,忽略了氣液兩相流交替振蕩帶走的熱量,因此數(shù)值模擬結(jié)果與本文所總結(jié)關(guān)聯(lián)式的結(jié)果相比偏低。
[Abstract]:With the increasing enhancement of internal combustion engine, the problem of piston heat load is highlighted. To solve the problem of piston heat load has become the bottleneck of strengthening the internal combustion engine. The piston intensive cooling technology is one of the most effective methods to solve this problem. The continuous oscillation of two phase flow in the oil chamber can form the effect of enhanced heat transfer. Therefore, the flow and heat transfer of the two phase flow in the internal cooling oil have become a hot spot in recent years. But there is a lack of mechanism research at present. This paper is devoted to the research of the heat transfer system of the piston, and the finite element analysis system of the computational fluid foundation and the piston temperature field. On the basis of the experimental data, some assumptions about the circulation characteristics of the two phase flow in the oil cavity are put forward, and the injection model of the nozzle is established. By developing a special transient oil shooting visual test platform, the experimental results are combined with the finite element simulation, the CFD simulation, the dynamic analysis and the deduction calculation to determine the heat transfer of the two-phase fluid. The initial conditions and boundary conditions are the main factors affecting the oscillation flow characteristics of the two phase flow in the oil cavity. The correlation formula of the convective heat transfer criterion with the correction term is set up. The mechanism of the flow and heat transfer of the two phase flow in the internal cooling oil cavity is revealed, which provides a direct and reliable basis for the design and optimization of the piston cooling system. The main research work of the motive performance is laid out. The main research work of the paper is as follows: 1. the study of the jet characteristics of the cooling nozzle of the inner cooling oil cavity is carried out by setting up the nozzle jet test bed. The experimental research on the jet flow of the cooling nozzle at different injection pressure and injection temperature has been carried out, and the capture rate of the inlet of the inner cooling oil cavity and the nozzle exit to the spray are obtained. It is found that the greater the fuel injection pressure, the higher the injection temperature, the greater the divergence angle of the fuel injector, and the reflux of the inner cooling oil cavity. In addition, the results of the experimental data show that the jet of the cooling nozzle is a laminar jet. The simulation results show that the maximum velocity at the core area near the nozzle is in the location of the center 0.2-0.6mm of the offset center, and the velocity gradient of the maximum velocity of the core region increases with the increase of pressure, and the axial velocity of the cross section and the nozzle distance increase with the increase of the jet section and the nozzle distance. The effect of the jet is getting smaller and smaller. The velocity attenuation of the radial section of the jet is becoming more and more slow, and the velocity of the jet section is similar to that of the radial section of the jet. After the fluid is injected into the air, the jet velocity decreases gradually with the distance from 0 to 28.6mm. With the further development of the jet, the velocity of the jet is 2. In the vicinity of 8.6MM, the mass and energy exchange between the oil and the air, the attenuation of the axial velocity of the section intensifies, causing a sharp drop in the velocity of the jet. In addition, the study shows that the injection of the nozzle has a great influence on the static filling in the annular cavity of the inner cold oil cavity. Finally, the cluster laminar flow of the cooling fluid from the nozzle to the inlet section of the oil chamber is established. Inundated jet model, the relationship between flow rate, flow rate, injection pressure, nozzle radius and expansion angle at each section, and the variation of the axial velocity and jet distance in the section of the section.2. are studied in order to reveal the influence of each factor on the flow pattern of the two phase flow and the corresponding flow pattern converter. The flow morphology of two phase flow is discussed by means of experimental method. Considering the effect of piston motion on the flow pattern, the formation and transformation of two phase flow patterns in internal cooling oil are theoretically analyzed. The concept of area coverage is put forward, a prediction model for the flow shape of two phase flow is established, and the two phase flow in internal cooling oil cavity is carried out. The heat transfer intensity is determined. A dynamic visual target test bench is developed to monitor the flow pattern of the internal cooling fluid in real time. The flow pattern of the two phase flow in the internal cold oil cavity is observed directly by the shooting equipment, and the different rotational speeds, the jet pressure, the jet temperature, the static filling rate, the size of the inner cooling oil cavity and the shape of the cross section are compared. When the engine speed is low, the two phase flow in the inner cooling oil is mainly wave flow. As the engine speed increases, the more obvious the "liquid plug" phenomenon is, the higher the engine speed, the stronger the oil oscillation, the more complicated the flow pattern of the two phase flow in the inner cooling oil cavity; the injection temperature is not good. The same directly leads to the change of oil viscosity. As the viscosity of the oil increases, the flow pattern transformation in the inner cooling oil is accelerated and the engine speed of the engine is reduced in the inner cooling oil cavity. The shape of the inner cooling oil cavity has a great influence on its motion shape, the distribution of the two phase flow in the inner cold oil cavity is relatively regular, and the inner cooling oil cavity is in the inner cold oil cavity. When you go up, the oil on the right side hits the top of the oil chamber earlier, and when down, the oil in the oval inner cold oil is in the bottom, and the position of the "liquid plug" is much more in the oval inner cold oil. And when the water droplet shaped inner cold oil chamber goes down, most of the cycles are down to form "liquid" by the oil in and out of the oil cavity near the inner cold oil cavity. In contrast, the effect of the injection pressure on the flow in the oil cavity is negligible. In a comprehensive view, the main influence factor of the two-phase flow pattern in the inner cooling chamber is the filling rate. The numerical study of the dynamic characteristics of the two phase flow in the inner cold oil cavity of the engine speed.3. is studied by CF. The D model is used to simulate the flow of two phase flow in the inner cooling oil cavity. The area coverage and heat transfer characteristics of the two phase flow in the internal cooling oil chamber are compared with the different engine speed, jet pressure, jet temperature, inner cooling oil cavity size and section shape. The simulation results are in good agreement with the experimental results. The results show that the inner cooling oil cavity is on the inner cooling oil cavity. The heat transfer coefficient of the lower wall is contrary to the changing law of the crankshaft angle, and the heat transfer law of the inner and outer surfaces is consistent, and the injection temperature is different and the viscosity of the oil is different, which affects the area coverage and the heat transfer characteristics of the inner cooling oil. The rotational speed is different and the oscillation intensity of the inner oil inside the oil inner cooling oil is different, thus changing the internal cooling oil. The turbulence intensity and its variable heat transfer characteristics in the cavity, the structure of the oil cavity is different, which directly affects the oil filling rate and the erosion degree of the oil chamber wall in the reciprocating movement, thus affecting the heat transfer effect of the integrated heat transfer model of the.4. inner cold oil cavity from the angle of engineering application, combining the experimental research and numerical simulation results, using the internal force. On the basis of Nusselt, Prandt and Reynolds criterion, the convective formula is fitted by the least square method. The prediction model of the instantaneous convective heat transfer coefficient is established. The model is found in the process of the engine piston internal cooling oil chamber and engine speed in the rated speed of engine. The viscous bottom thickness of the fluid is reduced, and the viscous bottom thickness is greater than that of the inner cooling oil chamber when the engine speed is at any cylinder diameter. When the engine speed is the same, the thickness of the viscous bottom decreases with the increase of the cylinder diameter; the natural pair value of the product of Reynolds number and Prandt number is only related to the engine speed, and increases with the engine speed. The influence degree of the hypothesis, the neglecting factor and the non stability is analyzed by the numerical method. The error analysis of the heat transfer coefficient calculated by the correlation method is carried out by the finite element analysis combined with the hardness test. The results show the prediction model of the heat transfer coefficient of the inner cooling oil cavity. The convective heat transfer coefficient of the internal cooling fluid in the inner cooling oil of the piston can be predicted effectively, which can provide a theoretical basis for the design of the internal cold oil cavity of the piston. On the basis of the area coverage of the wall surface, the influence of the heat transfer characteristic of the.5. inner cold oil cavity on the piston reliability is combined with the test of the hardness test. The effect of the internal cooling oil cavity on the piston heat load is simulated by the finite element analysis software, the fatigue analysis software and the dynamic analysis software, and the position of the oil cavity to the piston is analyzed and discussed. The influence of the heat load, the effect of the internal cooling oil chamber setting on the piston two order movement and the influence of the inner cooling piston structure on the piston strength. The cooling effect proves that the use of the inner cooling oil chamber can greatly reduce the temperature of the whole piston, and the higher the position of the inner cooling oil cavity is in the piston head within the allowable range of structural strength. The better the effect of the piston head cooling, the lower the heat load. It is also found that the use of the inner cooling oil cavity can reduce the deformation of the piston and reduce the force between the piston and the cylinder, thus obviously improving the friction and wear of the piston, the lateral force and the skirt pressure. However, the two order motion stability of the piston will be reduced, at the same time. It also increases the percussion noise of the piston, so it is necessary to optimize the skirt profile of the piston. In the study of the new type of inner cooling oil cavity structure, it is found that the inner cooling structure can better avoid the stress concentration phenomenon, which can reduce the heat load of the whole piston through the inner cooling oil cavity, and can improve the ring by using the inlaid ring. It is found that the heat transfer efficiency of the inner cooling oil cavity affects the thermal load of the piston, and the flow pattern of the two phase flow in the inner cooling oil cavity is closely related to the heat transfer law. The flow morphology of the two phase flow is affected or indirectly. The flow pattern of the two phase flow directly reflects the distribution of the two phase flow, which determines the effective scour area of the liquid relative to the inner cold oil cavity and characterizing the intensity of the heat transfer. In addition, the gas liquid two-phase flow is ignored in the simulation calculation, and the gas liquid two phase flow is ignored. For the heat taken by the oscillation, the numerical simulation results are lower than those obtained by the conclusion in this paper.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TK401
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃榮華;胡蕾;徐昆朋;李進(jìn);;強(qiáng)制振蕩冷卻活塞機(jī)油溫度對流動形態(tài)的影響[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2016年10期
2 彭恩高;代輝;黃榮華;李桂全;;活塞穩(wěn)態(tài)溫度與柴油機(jī)運行工況的關(guān)系研究[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2016年05期
3 李闖;張翼;蔡強(qiáng);;冷卻油腔形狀對活塞溫度場影響[J];煤礦機(jī)械;2016年03期
4 周楊;李亞江;蘇道勝;林志雷;;高鎳奧氏體蠕墨鑄鐵活塞耐磨環(huán)的耐磨性與熱疲勞性[J];內(nèi)燃機(jī)與配件;2016年01期
5 熊培友;章健;劉世英;林風(fēng)華;;發(fā)動機(jī)活塞銷孔偏心對摩擦磨損影響的研究[J];內(nèi)燃機(jī)工程;2017年03期
6 周文;歐陽潔;崔立營;;運動界面追蹤的CVOFLS方法[J];工程數(shù)學(xué)學(xué)報;2015年05期
7 吳倩文;龐銘;解志民;胡定云;胡玉平;;活塞振蕩冷卻流動傳熱特性的研究[J];農(nóng)業(yè)裝備與車輛工程;2015年10期
8 吳倩文;張敬晨;龐銘;解志民;胡定云;胡玉平;;活塞振蕩冷卻的數(shù)值模擬計算及溫度場分析[J];車用發(fā)動機(jī);2015年04期
9 朱海榮;張衛(wèi)正;原彥鵬;;改進(jìn)的VOF方法對氣液兩相流振蕩流動和傳熱計算的影響[J];航空動力學(xué)報;2015年05期
10 崔云先;趙家慧;劉友;丁萬昱;盛曉幸;宮刻;;內(nèi)燃機(jī)活塞表面瞬態(tài)溫度傳感器的研制[J];中國機(jī)械工程;2015年09期
相關(guān)會議論文 前1條
1 鄒利亞;顧善愚;;利用硬度塞對發(fā)動機(jī)活塞工作溫度的測試[A];2013中國汽車工程學(xué)會年會論文集[C];2013年
相關(guān)博士學(xué)位論文 前6條
1 朱海榮;氣液兩相流振蕩流動與傳熱特性研究[D];北京理工大學(xué);2015年
2 張宇;高功率密度柴油機(jī)共軛傳熱基礎(chǔ)問題研究[D];浙江大學(xué);2013年
3 張邵波;納米流體強(qiáng)化傳熱的實驗和數(shù)值模擬研究[D];浙江大學(xué);2009年
4 劉夷平;水平油氣兩相流流型轉(zhuǎn)換及其相界面特性的研究[D];上海交通大學(xué);2008年
5 劉世英;內(nèi)燃機(jī)活塞機(jī)械疲勞損傷與可靠性研究[D];山東大學(xué);2007年
6 李強(qiáng);納米流體強(qiáng)化傳熱機(jī)理研究[D];南京理工大學(xué);2004年
相關(guān)碩士學(xué)位論文 前7條
1 陳延鵬;活塞裙部結(jié)構(gòu)研究及其對發(fā)動機(jī)性能的影響[D];山東理工大學(xué);2016年
2 黃澤輝;活塞振蕩油腔換熱邊界條件的試驗研究[D];山東大學(xué);2015年
3 王新;柴油機(jī)活塞內(nèi)冷油腔換熱特性的研究[D];山東理工大學(xué);2015年
4 韓閃閃;柴油機(jī)活塞結(jié)構(gòu)強(qiáng)度和傳熱的影響因素研究[D];昆明理工大學(xué);2013年
5 仲杰;活塞噴油振蕩冷卻的穩(wěn)、瞬態(tài)模擬計算及活塞溫度場分析[D];山東大學(xué);2012年
6 李冠男;活塞的三維穩(wěn)態(tài)熱分析及熱強(qiáng)度計算[D];哈爾濱工程大學(xué);2006年
7 王忠瑜;活塞的傳熱和熱強(qiáng)度研究[D];重慶大學(xué);2002年
,本文編號:2078589
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/2078589.html