鐵錳材料活化過(guò)硫酸鹽去除水中難降解有機(jī)污染物的機(jī)制與效能
本文選題:高級(jí)氧化技術(shù) + 過(guò)硫酸鹽; 參考:《吉林大學(xué)》2017年博士論文
【摘要】:基于硫酸根自由基(SO4-·)的高級(jí)氧化技術(shù)是近年來(lái)發(fā)展起來(lái)的處理難降解有機(jī)污染物的新技術(shù),具有氧化能力強(qiáng),氧化劑穩(wěn)定性好,受pH影響小等優(yōu)點(diǎn),具有廣闊的應(yīng)用前景。應(yīng)用過(guò)硫酸鹽高級(jí)氧化技術(shù)的關(guān)鍵是高效、快速地活化過(guò)硫酸鹽產(chǎn)生SO4-·。在諸多活化方法中過(guò)渡金屬均相活化耗能少,技術(shù)難度低,具有明顯的優(yōu)勢(shì)。但過(guò)渡金屬離子的引入易引起環(huán)境的二次污染,因此制備廉價(jià)易得且無(wú)二次污染的非均相活化材料成為趨勢(shì)。鐵、錳元素在地殼中賦存量大,原材料廉價(jià)易得,二次污染風(fēng)險(xiǎn)小,因此開(kāi)發(fā)基于鐵錳的非均相活化材料用于去除水體中難降解有機(jī)污染物具有重要意義。據(jù)此,本研究開(kāi)發(fā)了系列鐵錳基活化材料,構(gòu)建了其活化過(guò)硫酸鹽去除苯胺類(lèi)及氯酚類(lèi)難降解有機(jī)污染物的高級(jí)氧化技術(shù),系統(tǒng)研究了各方法的作用機(jī)制和效能。主要內(nèi)容包括:(1)通過(guò)系列實(shí)驗(yàn)優(yōu)化了 Fe~(2+)活化過(guò)硫酸鹽氧化去除苯胺的條件,并探究了這一條件下水中常見(jiàn)陰陽(yáng)離子對(duì)苯胺去除的影響,在本實(shí)驗(yàn)條件下Fe~(2+)活化過(guò)硫酸鹽體系可以有效去除苯胺,反應(yīng)60min內(nèi)苯胺的去除率可達(dá)86.33%,反應(yīng)的最佳條件為3.3mmol/LFe~(2+)和4.4mmol/L過(guò)硫酸鹽,即苯胺/過(guò)硫酸鹽/Fe~(2+)的摩爾比為10/4/3。在Fe~(2+)活化過(guò)硫酸鹽去除苯胺的最優(yōu)條件下,水中常見(jiàn)陰離子的存在如CO32-、PO43-、SO42-、HCO3-和NO3-對(duì)苯胺的降解有抑制作用。按照抑制作用由強(qiáng)到弱排序?yàn)镻O43-CO32-SO42-HCO3-NO3-。水中常見(jiàn)的陽(yáng)離子(Na+、K+、Mg~(2+)和Ca~(2+))對(duì)Fe~(2+)活化過(guò)硫酸鹽去除苯胺的抑制作用可以忽略。相比于各離子單獨(dú)存在的情況,實(shí)際水體中存在的各陰離子對(duì)Fe~(2+)活化PS去除苯胺的抑制作用具有疊加效果。在將該技術(shù)應(yīng)用于實(shí)際時(shí),需要充分考慮共存離子的影響。(2)采用超聲共沉淀法制備了 Fe_3O_4磁性納米顆粒,通過(guò)XRD和TEM表征,該磁性納米顆粒為直徑10-30nm的準(zhǔn)球面結(jié)構(gòu)。該Fe_3O_4磁性納米顆?捎行Щ罨疨S去除水中的對(duì)硝基苯胺。在PS投加量為8mmol/L,Fe_3O_4MNPs投加量為5.32g/L,pH=7.0±0.2,反應(yīng)溫度為25℃時(shí),反應(yīng)300min后PNA降解率能達(dá)到1000%,TOC去除率達(dá)67%。根據(jù)Fe_3O_4MNPs活化PS降解PNA機(jī)理,推導(dǎo)出PNA降解的準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)方程。實(shí)驗(yàn)結(jié)果驗(yàn)證了在不同影響因素條件下,PNA的降解均遵循準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué),得出了 PNA降解的表觀速率常數(shù),在前述條件下,PNA降解的表觀速率常數(shù)為0.00176min-1。Fe_3O_4MNPs雖可有效活化PS降解PNA,但在重復(fù)利用四次后,失去活化性能,該材料的不穩(wěn)定性限制了其在污水處理中的應(yīng)用。(3)通過(guò)氣固反應(yīng)法制備了 Fe~0@Fe_3O_4鐵合金。研究結(jié)果表明Fe~0@Fe_3O_4鐵合金可有效活化PS去除水中PNA,相比投加同樣質(zhì)量Fe_3O_4活化過(guò)硫酸鹽去除PNA的效率提高了 90%以上。構(gòu)建了鐵合金活化PS降解PNA的高級(jí)氧化系統(tǒng),在PS投加量為30mmol/L,Fe~0@Fe_3O_4鐵合金投加量為0.05g/L,反應(yīng)溫度為25℃時(shí),反應(yīng)180min后PNA降解率可達(dá)1000,且PNA的降解規(guī)律符合準(zhǔn)一級(jí)動(dòng)力學(xué)方程。在上述條件下,PNA降解的表觀速率常數(shù)為0.02898min-1。通過(guò)自由基的淬滅和電子自旋共振(EPR)分析,鑒別了活性自由基的種類(lèi)為羥基自由基和硫酸根自由基。研究還闡明了 Fe~0/Fe_3O_4核殼結(jié)構(gòu)合金納米材料活化PS降解PNA的反應(yīng)機(jī)制。將Fe~0/Fe_3O_4核殼結(jié)構(gòu)合金納米材料作為PS活化劑引入高級(jí)氧化體系中,實(shí)現(xiàn)了 Fe_3O_4表面Fe(Ⅱ)的快速再生,大幅提高了 Fe_3O_4的活化效能。(4)采用水熱合成法制備了 α-MnO_2納米線狀材料,并構(gòu)建了其活化PS降解2,4-DCP的高級(jí)氧化體系。研究發(fā)現(xiàn),該體系去除污染物性能優(yōu)異,30℃,20mmol/LPS,0.2g/Lα-MnO_2 的初始條件下,180min 內(nèi) 100mg/L2,4-DCP 的降解效率高達(dá)90.2%,TOC去除率達(dá)62.37%。根據(jù)其主反應(yīng)機(jī)理,推導(dǎo)出其反應(yīng)動(dòng)力學(xué)方程為,在前述條件下,2,4-DCP降解的半衰期為18.1min。自由基淬滅實(shí)驗(yàn)和EPR結(jié)果表明體系中主要活性自由基為硫酸根自由基和羥基自由基,且自由基的量隨時(shí)間延長(zhǎng)而增加。該材料穩(wěn)定性好,重復(fù)利用五次后仍可有效活化PS氧化降解2,4-DCP,去除率仍可高達(dá)81.2%,在實(shí)際應(yīng)用中可降低污水的處理成本。(5)為在工程中能夠?qū)崿F(xiàn)α-MnO_2納米線的回收和重復(fù)利用,本研究改進(jìn)了傳統(tǒng)水熱合成方法,首次制備出Fe_3O_4/α-MnO_2線狀納米復(fù)合材料。研究發(fā)現(xiàn),該材料可高效活化PS去除水中的2,4-DCP,在Fe_3O_4/α-MnO_2復(fù)合材料投加量為0.4g/L,PS濃度為30mmol/L,反應(yīng)溫度為30℃時(shí),2,4-DCP的去除率180min內(nèi)達(dá)到96.3%,半衰期為26.1min。明確了 Fe_3O_4/α-MnO_2復(fù)合材料活化PS體系中2,4-DCP的降解反應(yīng)動(dòng)力學(xué)規(guī)律,及Fe_3O_4/α-MnO_2復(fù)合材料活化PS降解2,4-DCP的反應(yīng)機(jī)制。四次回收并重復(fù)使用后,Fe_3O_4/α-MnO_2復(fù)合材料仍具有良好的活化性能,2,4-DCP的降解率仍高達(dá)94.5%。該材料活化效能高,且穩(wěn)定性好,易于重復(fù)利用,可廣泛應(yīng)用于污水處理。
[Abstract]:The advanced oxidation technology based on radical sulfate radical (SO4-) is a new technology for the treatment of refractory organic pollutants in recent years. It has the advantages of strong oxidation capacity, good oxidizing agent stability and small effect on pH. It has a broad application prospect. The key to the application of sulphate advanced oxidation technology is to efficiently and quickly activate persulfate. Salt produced SO4-. In many activation methods, the transition metal has less energy consumption, low technical difficulty and obvious advantages. However, the introduction of transition metal ions is easy to cause two pollution of the environment. Therefore, the preparation of inexpensive and non two pollution heterogeneous activated materials becomes the trend. Iron and manganese elements are large in the crust and raw materials Therefore, the development of a series of ferromanganese based activation materials and the construction of the advanced oxidation techniques for the removal of aniline and chlorophenols to remove the refractory organic pollutants by activated persulfate have been developed in this study. The mechanism and effectiveness of various methods are systematically studied. The main contents are as follows: (1) the conditions for the removal of aniline by Fe~ (2+) activated persulfate oxidation were optimized through a series of experiments, and the effects of the common Yin and yang ions on the removal of aniline in the water were investigated. Under this experimental condition, the Fe~ (2+) activated persulfate system could be effectively removed. In addition to aniline, the removal rate of aniline in 60min can reach 86.33%. The optimum conditions for the reaction are 3.3mmol/LFe~ (2+) and 4.4mmol/L persulfate, that is, the molar ratio of aniline / persulfate /Fe~ (2+) is the optimal condition for 10/4/3. in the removal of aniline by Fe~ (2+) activated persulfate, the presence of common anions in water, such as CO32-, PO43-, SO42-, SO42-, and pairs. The degradation of aniline has an inhibitory effect. The inhibition effect of the common cations in PO43-CO32-SO42-HCO3-NO3-. water (Na+, K+, Mg~ (2+) and Ca~ (2+)) from strong to weak (K+, Mg~ (2+) and Ca~ (2+)) can be neglected in the inhibition of Fe~ (2+) activated persulfate removal of aniline. Compared with the existence of individual ions alone, the anions in the actual water body are to Fe~ (2+). The inhibitory effect of activated PS on Aniline Removal has superimposed effect. When applying this technique to practice, the effect of coexistent ions should be fully considered. (2) Fe_3O_4 magnetic nanoparticles are prepared by ultrasonic co precipitation method. The magnetic nanoparticles are characterized by XRD and TEM. The magnetic nanoparticles are quasi spherical structures of 10-30nm diameter. The Fe_3O_4 magnetic nanoparticles PS can effectively activate PS to remove p-nitroaniline in water. When the dosage of PS is 8mmol/L, the dosage of Fe_3O_4MNPs is 5.32g/L, pH=7.0 + 0.2, and the reaction temperature is 25, the degradation rate of PNA can reach 1000%, and TOC removal rate reaches 67%. according to Fe_3O_4MNPs activation PS degradation mechanism. The results show that under the conditions of different influence factors, the degradation of PNA all follows the quasi first order reaction kinetics, and the apparent rate constant of PNA degradation is obtained. Under the foregoing conditions, the apparent rate constant of PNA degradation is 0.00176min-1.Fe_3O_4MNPs can effectively activate PS to degrade PNA, but after repeated use of four times, the activation property is lost, this material is lost. The instability limits its application in sewage treatment. (3) Fe~0@Fe_3O_4 ferroalloys have been prepared by gas solid reaction. The results show that Fe~0@Fe_3O_4 ferroalloys can effectively activate PS to remove PNA in water and increase the efficiency of PNA by adding the same mass Fe_3O_4 activated persulfate to PNA. The activation PS drop of the ferroalloy is constructed. To solve the advanced oxidation system of PNA, when the dosage of PS is 30mmol/L, the dosage of Fe~0@Fe_3O_4 ferroalloy is 0.05g/L, the reaction temperature is 25 C, the degradation rate of PNA can reach 1000, and the degradation law of PNA conforms to the quasi first order kinetic equation. Under the above conditions, the apparent rate constant of PNA degradation is quenched by the free radical of 0.02898min-1.. With the electron spin resonance (EPR) analysis, the species of active radicals are identified as hydroxyl radical and radical radical. The reaction mechanism of Fe~0/Fe_3O_4 nuclear shell structure alloy nanomaterials to activate PS to degrade PNA is also elucidated. The Fe~0/Fe_3O_4 nuclear shell alloy nanomaterials are introduced into the advanced oxidation system as PS activators. The rapid regeneration of Fe (II) on the surface of Fe_3O_4 has greatly improved the activation efficiency of Fe_3O_4. (4) the nano linear material of alpha -MnO_2 was prepared by hydrothermal synthesis, and the advanced oxidation system for the activation of PS to degrade 2,4-DCP was constructed. The study found that the system was excellent in removal of pollutants, with the initial conditions of 30, 20mmol/LPS, 0.2g/L a -MnO_2, 180. The degradation efficiency of 100mg/L2,4-DCP in Min is as high as 90.2%, and the removal rate of TOC reaches 62.37%.. The reaction kinetics equation is deduced according to its main reaction mechanism. Under the foregoing conditions, the half-life of 2,4-DCP degradation is 18.1min. radical quenching experiment and EPR results show that the main active radicals in the system are radical radical and hydroxyl radical of sulfate radical, The amount of free radical increases with time. The material has good stability and can effectively activate PS oxidation and degradation of 2,4-DCP after repeated use of five times. The removal rate can still be as high as 81.2%. In practical application, the cost of wastewater treatment can be reduced. (5) the recovery and reuse of alpha -MnO_2 nanowires can be achieved in engineering. This study improved the tradition. Fe_3O_4/ alpha -MnO_2 linear nanocomposites were prepared for the first time by hydrothermal synthesis. It was found that the material can efficiently activate PS to remove 2,4-DCP in water. When the dosage of Fe_3O_4/ alpha -MnO_2 composite is 0.4g/L, PS concentration is 30mmol/L, and the reaction temperature is 30, the removal rate of 2,4-DCP is up to 96.3%, and the half-life is clear. The kinetics of the degradation reaction of 2,4-DCP in the activated PS system of Fe_3O_4/ alpha -MnO_2 composite and the reaction mechanism of Fe_3O_4/ alpha -MnO_2 composite activated by PS to degrade 2,4-DCP. After four recovery and repeated use, the Fe_3O_4/ alpha -MnO_2 composite still has good activation properties, and the 2,4-DCP degradation rate is still up to the activation efficiency of the 94.5%. material. It can be widely used in sewage treatment because of its high efficiency, good stability and easy reuse.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉桂芳;孫亞全;陸洪宇;鞠然;朱麗楠;康凱;;活化過(guò)硫酸鹽技術(shù)的研究進(jìn)展[J];工業(yè)水處理;2012年12期
2 劉錫鈞;;過(guò)硫酸鹽生產(chǎn)方法的探討[J];無(wú)機(jī)鹽工業(yè);1984年03期
3 張志炳;余國(guó)琮;周明生;夏登年;陳澤雨;;我國(guó)過(guò)硫酸鹽工業(yè)的現(xiàn)狀與發(fā)展概況[J];無(wú)機(jī)鹽工業(yè);1991年06期
4 楊世迎;楊鑫;王萍;單良;張文義;;過(guò)硫酸鹽高級(jí)氧化技術(shù)的活化方法研究進(jìn)展[J];現(xiàn)代化工;2009年04期
5 楊世迎;陳友媛;胥慧真;王萍;劉玉紅;王茂東;;過(guò)硫酸鹽活化高級(jí)氧化新技術(shù)[J];化學(xué)進(jìn)展;2008年09期
6 楊焰;李德良;陳茜文;羅潔;;過(guò)硫酸鹽/硫酸體系微蝕性能的研究[J];表面技術(shù);2009年03期
7 黃永明;張丙基;;過(guò)硫酸鹽生產(chǎn)用泵的改造[J];廣東化工;2007年05期
8 李炳智;;超聲/過(guò)硫酸鹽聯(lián)合降解1,1,1-三氯乙烷的機(jī)理研究[J];安全與環(huán)境學(xué)報(bào);2013年04期
9 朱杰;羅啟仕;郭琳;劉小寧;劉錦雨;李炳智;孟梁;;堿熱活化過(guò)硫酸鹽氧化水中氯苯的試驗(yàn)[J];環(huán)境化學(xué);2013年12期
10 肖克強(qiáng);牛友斌;林柳武;;發(fā)展過(guò)硫酸鹽清潔生產(chǎn)工藝[J];河南化工;2010年11期
相關(guān)會(huì)議論文 前4條
1 杜肖哲;張永清;;熱解過(guò)硫酸鹽降解對(duì)氯苯胺的研究[A];第六屆全國(guó)環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
2 晏井春;朱麗華;陸曉華;唐和清;;納米四氧化三鐵活化過(guò)硫酸鹽降解RhB的研究[A];第六屆全國(guó)環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
3 楊世迎;楊鑫;邵雪停;張文義;王雷雷;;活性炭激活過(guò)硫酸鹽水處理技術(shù):操作方式的影響[A];2010中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第三卷)[C];2010年
4 楊世迎;楊鑫;梁婷;馬楠;;零價(jià)鐵還原和過(guò)硫酸鹽氧化聯(lián)合降解水中硝基苯[A];第六屆全國(guó)環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前3條
1 羅鳴灶 鄧文桂 沈昌培;清流——全國(guó)最大過(guò)硫酸鹽項(xiàng)目開(kāi)工[N];三明日?qǐng)?bào);2011年
2 馬志堅(jiān);我省最大的過(guò)硫酸鹽生產(chǎn)企業(yè)落戶(hù)建甌[N];閩北日?qǐng)?bào);2010年
3 魏劍生 馬志堅(jiān);我省最大的過(guò)硫酸鹽企業(yè)投產(chǎn)[N];福建日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前2條
1 婁曉yN;無(wú)機(jī)陰離子活化過(guò)硫酸鹽氧化降解典型有機(jī)污染物的研究[D];東華大學(xué);2016年
2 趙妍;鐵錳材料活化過(guò)硫酸鹽去除水中難降解有機(jī)污染物的機(jī)制與效能[D];吉林大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 王展;Fe(Ⅲ)/過(guò)硫酸鹽體系降解有機(jī)污染物及其機(jī)理研究[D];上海大學(xué);2015年
2 葛德明;超重力法強(qiáng)化過(guò)硫酸鹽體系處理染料廢水[D];北京化工大學(xué);2015年
3 陳玉山(Tran Ngoc Son);有氧條件下黃鐵礦活化過(guò)硫酸鹽降解水中對(duì)氯苯胺的研究[D];華南理工大學(xué);2015年
4 吳平;改性活性炭催化過(guò)硫酸鹽氧化降解活性艷紅X-3B[D];四川農(nóng)業(yè)大學(xué);2014年
5 閆琨;Fe~0-C活化過(guò)硫酸鹽降解地下水中2.4-DNT的研究[D];東華理工大學(xué);2016年
6 殷鵬華;活化過(guò)硫酸鹽對(duì)地下水中全氟辛酸(PFOA)的氧化降解研究[D];南京大學(xué);2016年
7 王航;電氣石催化過(guò)硫酸鹽降解染料廢水[D];吉林大學(xué);2016年
8 張咪;過(guò)硫酸鹽高級(jí)氧化技術(shù)降解對(duì)硝基苯酚的研究[D];華中科技大學(xué);2014年
9 劉國(guó)良;過(guò)硫酸鹽介導(dǎo)的氧化交叉脫氫偶聯(lián)合成多取代的喹啉-2-羧酸乙酯[D];山東大學(xué);2016年
10 王楠;過(guò)硫酸鹽活化新方法及其降解阿特拉津特性的研究[D];華中師范大學(xué);2016年
,本文編號(hào):2053887
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/2053887.html