天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

高鹽環(huán)境氯酚氧化降解體系中有機(jī)鹵代物生成機(jī)制與毒性評(píng)價(jià)研究

發(fā)布時(shí)間:2018-06-02 10:08

  本文選題:高鹽氯酚廢水 + Co/PMS ; 參考:《東華大學(xué)》2017年博士論文


【摘要】:氯酚廢水主要來(lái)源于煉油、煉焦、造紙、醫(yī)藥、印染、化工等行業(yè),其排放量大,對(duì)環(huán)境造成極大的威脅,因而氯酚廢水的無(wú)害化處理成為國(guó)內(nèi)外學(xué)者關(guān)注的熱點(diǎn)問(wèn)題。近年來(lái),基于硫酸根自由基(SO4·-)的高級(jí)氧化技術(shù)因其反應(yīng)速度快、限制條件少,處理效率高等優(yōu)點(diǎn),被認(rèn)為是未來(lái)可能應(yīng)用于處理氯酚類等有機(jī)污染物的新型技術(shù)。但是,在對(duì)氯酚廢水成分的考察中發(fā)現(xiàn),其成分通常較為復(fù)雜,除含有高濃度的酚類污染物外,又含有大量的鹽分。高濃度的鹽不僅會(huì)對(duì)有機(jī)物降解動(dòng)力學(xué)產(chǎn)生影響,且生成的活性物種與有機(jī)物反應(yīng)還可能產(chǎn)生毒性更大的有機(jī)鹵代物(AOX),在高級(jí)氧化體系大規(guī)模運(yùn)用之前,我們需對(duì)其進(jìn)行謹(jǐn)慎評(píng)估。因此,開(kāi)展高級(jí)氧化體系處理高鹽氯酚廢水時(shí)有機(jī)鹵代物的生成機(jī)制以及毒性評(píng)價(jià)研究具有十分重要的意義。本文選擇了幾種典型的氯酚,包括2,4,6-三氯酚(TCP)、鄰間對(duì)氯苯酚(2-CP、3-CP、4-CP)、2,4,6-三溴酚(TBP)、4-溴-2-氯-苯酚(BCP),研究了它們?cè)诤}體系中的氧化降解行為,重點(diǎn)分析了它們?cè)诨趩芜^(guò)氧硫酸氫鹽(PMS)和過(guò)二硫酸鹽(PS)的高級(jí)氧化體系中形成的AOX及其轉(zhuǎn)化機(jī)制。此外,還系統(tǒng)的評(píng)估了氯離子的存在對(duì)氯酚降解過(guò)程中AOX生成及生物毒性的影響。主要結(jié)論如下:(1)對(duì)比Co/PMS和UV/H_2O_2體系降解TCP發(fā)現(xiàn),Cl-的存在對(duì)Co/PMS體系中AOX的生成影響顯著,AOX生成量隨著Cl-濃度(0~300mM)的增加而升高;在UV/H_2O_2體系中,Cl-濃度的升高對(duì)體系中AOX生成量幾乎無(wú)影響。在酸性條件下,兩個(gè)體系中AOX生成量均會(huì)隨pH降低而升高。對(duì)比Cl-存在時(shí)的體系中的中間產(chǎn)物發(fā)現(xiàn),均會(huì)檢測(cè)到多種高毒性有機(jī)氯代副產(chǎn)物,如2,3,4,6-四氯苯酚、2,3,4,5-四氯苯酚和2,3,5,6-四氯苯酚等。采用發(fā)光細(xì)菌法對(duì)污染物降解前后的生物毒性進(jìn)行分析,Cl-的存在使Co/PMS體系中溶液的生物毒性明顯增強(qiáng)且在180 min反應(yīng)時(shí)間內(nèi)一直保持在較高的毒性范圍。無(wú)論是否添加Cl-,UV/H_2O_2體系中溶液的急性毒性隨反應(yīng)時(shí)間逐漸降低。(2)利用UV/PS體系降解單氯酚(MCPs)的研究表明,PS濃度與MCPs的降解性能具有正相關(guān)作用;向體系中加入0~300 mM的Cl-對(duì)MCPs的降解速率無(wú)明顯影響。通過(guò)對(duì)中間產(chǎn)物定性和定量分析,無(wú)論體系中是否添加Cl-,均會(huì)檢測(cè)到多種高毒性有機(jī)氯代副產(chǎn)物,且在4-CP的降解中檢測(cè)到更多種類的有毒有機(jī)鹵代物。在此基礎(chǔ)上對(duì)4-CP在UV/PS體系中的降解途徑進(jìn)行了推測(cè)。在AOX的測(cè)定中發(fā)現(xiàn),Cl-的存在對(duì)UV/PS體系中AOX影響顯著,尤其是對(duì)4-CP。AOX值在60 min內(nèi)隨反應(yīng)時(shí)間變化逐漸下降,但是從60 min開(kāi)始,這種減小趨勢(shì)明顯減弱,呈現(xiàn)出一種反常的增加現(xiàn)象。通過(guò)對(duì)UV/PS降解MCPs過(guò)程中急性生物毒性的分析可知,溶液對(duì)發(fā)光細(xì)菌的抑制率隨時(shí)間逐漸增加,急性毒性逐漸增強(qiáng)。(3)通過(guò)外加Cl-和微量Br-來(lái)模擬鹵素離子在高鹽廢水處理時(shí)可能發(fā)生的反應(yīng)及其環(huán)境意義。研究發(fā)現(xiàn),PMS可以與鹵素離子(Cl-、Br-)發(fā)生雙電子轉(zhuǎn)移反應(yīng),使Cl-和Br-分別被氧化為活性氯物種Cl2/HOCl和HOBr/OBr-,而這些活性鹵代物種可以促使鹵代酚發(fā)生降解,且鹵素離子濃度的增加有利于鹵代酚的降解。在酸性條件下,pH的增加有利于鹵代酚的降解,同時(shí)pH也會(huì)影響中間產(chǎn)物的種類。在PMS/Br-體系中,4 h內(nèi)TCP的礦化率僅為2.3%;在PMS/Cl-體系中,TBP的礦化率隨反應(yīng)時(shí)間而升高,但在4 h內(nèi)的礦化率也只有22.9%。通過(guò)GC-MS和UPLC-QTOF-MS對(duì)中間產(chǎn)物定性和定量分析,鹵代酚降解過(guò)程中會(huì)生成多種高毒性有機(jī)鹵代物,包括多氯代苯酚、多溴代苯酚、氯溴同體的芳香類物質(zhì),且多數(shù)有毒有機(jī)副產(chǎn)物自生成開(kāi)始直至測(cè)定結(jié)束都維持在很高的水平。即使是微量的Br-(0.1 m M)也能夠?qū)е露喾N有毒有機(jī)溴代產(chǎn)物的產(chǎn)生。本研究對(duì)基于PMS高級(jí)氧化體系在含鹽廢水方面的實(shí)際應(yīng)用具有一定的指導(dǎo)意義。在評(píng)價(jià)PMS高級(jí)氧化體系對(duì)含鹽廢水的處理效果時(shí),除了考慮氯離子的影響外,溴離子的影響也不容忽視。(4)選取既含有氯取代基又有溴取代基的BCP作為模型污染物,開(kāi)展了其在Co/PMS體系中的降解研究。研究表明,BCP的降解速率隨著底物濃度的升高而下降,隨著PMS濃度、Co2+濃度以及溶液初始pH的升高而增大。不同濃度的Cl-對(duì)BCP的降解速率有不同的影響(雙重作用):當(dāng)氯離子濃度小于5 mM時(shí)BCP降解速率隨Cl-濃度的增加而逐漸降低,外加氯離子抑制了反應(yīng)的進(jìn)行。接下來(lái),反應(yīng)速率常數(shù)會(huì)隨著氯離子濃度(5~50 m M)的繼續(xù)增加緩慢提高,在50 mM之后,反應(yīng)速率常數(shù)增加更為明顯,此時(shí)外加氯離子對(duì)反應(yīng)呈現(xiàn)促進(jìn)作用。隨著Cl-濃度增加,BCP的礦化度受到明顯抑制。通過(guò)GC-MS產(chǎn)物鑒定可知,在氯離子存在下,隨著B(niǎo)CP的降解,生成了多種氯代副產(chǎn)物,但是未發(fā)現(xiàn)有多溴代物的生成。這可能與鹵取代基的電負(fù)性相關(guān)(FClBrI),即鹵代基的電負(fù)性越強(qiáng),鹵代有機(jī)物越容易氧化脫鹵。
[Abstract]:Chlorophenol wastewater mainly comes from oil refining, coking, papermaking, medicine, printing and dyeing, chemical industry and other industries. It has a large emission and a great threat to the environment. Therefore, the harmless treatment of chlorophenol wastewater has become a hot issue for scholars both at home and abroad. In recent years, the advanced oxidation technology based on the radical sulfate radical (SO4 -) has a fast reaction speed and limit the strip. It is considered to be a new technology for the treatment of chlorophenols and other organic pollutants in the future. However, in the investigation of the composition of chlorophenol wastewater, it is found that the composition is usually more complex and contains a large amount of salt in addition to high concentration of phenolic pollutants. High concentration of salt will not only degrade organic matter. The reaction of the active species to the organic matter may produce more toxic organic halogen (AOX). Before the large-scale application of the advanced oxidation system, we need to evaluate it carefully. Therefore, the formation mechanism and toxicity evaluation of organic halogen in high chlorophenol wastewater treatment by advanced oxidation system Some typical chlorophenols, including 2,4,6- three chlorophenol (TCP), adjacent perchlorophenol (2-CP, 3-CP, 4-CP), 2,4,6- three bromophenol (TBP), 4- bromine -2- chloride phenol (BCP), are selected in this paper. Their oxidation degradation behavior in the salt containing system is studied. The emphasis is on their analysis based on the single peroxisate (PMS) and over two. AOX and its transformation mechanism in the high oxidation system of sulfate (PS). Furthermore, the effects of the existence of chlorine ions on the formation of AOX and the biological toxicity of chlorophenol degradation are systematically evaluated. The main conclusions are as follows: (1) the existence of Cl- is significant to the formation of AOX in Co/PMS system, AOX, as compared with the Co/PMS and UV/H_2O_2 system, AOX. The amount of formation increased with the increase of Cl- concentration (0~300mM); in the UV/H_2O_2 system, the increase of Cl- concentration had little effect on the AOX production in the system. Under the acidic condition, the AOX generation in the two systems would all increase with the decrease of pH. The intermediate products in the system when the Cl- existed, found that all kinds of high toxic organochlorine could be detected. By-products, such as 2,3,4,6- four chlorophenol, 2,3,4,5- four Chlorophenol and 2,3,5,6- four chlorophenol, were used to analyze the biological toxicity of the pollutants before and after the degradation of pollutants. The existence of Cl- significantly enhanced the biological toxicity of the solution in the Co/PMS system and kept in a higher toxicity range in the 180 min reaction time. In addition Cl-, the acute toxicity of the solution in the UV/H_2O_2 system decreased with the reaction time. (2) the study on the degradation of monchlorophenol (MCPs) by the UV/PS system showed that the concentration of PS had a positive correlation with the degradation performance of MCPs, and the Cl- of 0~300 mM to the system had no obvious effect on the degradation rate of MCPs. The qualitative and quantitative analysis of intermediate products had no effect. If Cl- is added to the system, a variety of highly toxic organochlorinated by-products can be detected, and more kinds of toxic organic halogenates are detected in the degradation of 4-CP. On this basis, the degradation pathway of 4-CP in the UV/PS system is speculated. In the AOX determination, the existence of Cl- has a significant influence on AOX in the UV/PS system, especially in the UV/PS system. The 4-CP.AOX value decreased with the reaction time in 60 min, but the decrease trend was obviously weakened from 60 min, which showed an abnormal increase. Through the analysis of the acute biological toxicity of UV/PS degradation in MCPs, the inhibition rate of the solution to luminescent bacteria was gradually increased with time, and the acute toxicity increased gradually. (3 ) by adding Cl- and micro Br- to simulate the possible reaction of halogen ions in the treatment of high salt waste water and its environmental significance. It is found that PMS can have double electron transfer reaction with halogen ions (Cl-, Br-), and Cl- and Br- are oxidized to active chlorine species Cl2/HOCl and HOBr/OBr- respectively, and these active halogenated species can promote halogenation. The degradation of phenol and the increase of halogen ion concentration are beneficial to the degradation of halogenated phenol. Under the acidic condition, the increase of pH is beneficial to the degradation of halogenated phenols, while pH also affects the type of intermediate products. In the PMS/Br- system, the mineralization rate of TCP is only 2.3% in 4 h; in the PMS/Cl- system, the mineralization rate of TBP increases with the reaction time, but within 4 h. The mineralization rate is also only 22.9%. through GC-MS and UPLC-QTOF-MS for the qualitative and quantitative analysis of intermediate products. In the process of halogenated phenol degradation, a variety of highly toxic organic halogenates, including polychlorinated phenol, polybrominated phenol, and chlorinated bromide, are produced, and most of the toxic organic by-products are maintained from the beginning until the end of the determination. A very high level. Even a small amount of Br- (0.1 M M) can lead to the production of a variety of toxic organic brominated products. This study has a certain guiding significance for the practical application of the advanced oxidation system based on PMS in the salt containing wastewater. In evaluating the treatment effect of the PMS advanced oxidation system to the salt containing wastewater, the effect of the chloride ion is considered. In addition, the effect of bromine ion can not be ignored. (4) select BCP containing both chlorine substituent and bromine substituent as model pollutant, and carry out its degradation in Co/PMS system. The study shows that the degradation rate of BCP decreases with the increase of substrate concentration, and increases with the concentration of PMS, Co2+ concentration and the initial pH of the solution. The concentration of Cl- has different effects on the degradation rate of BCP: when the concentration of chlorine ion is less than 5 mM, the degradation rate of BCP gradually decreases with the increase of Cl- concentration, and the addition of chloride ions inhibits the reaction. The reaction rate constant will be slowly increased with the increase of the chloride concentration (5 ~50 m M), and after 50 mM, the reaction rate will be reversed. The increase of rate constant is more obvious. At this time, the addition of chloride ion has a promotion effect on the reaction. With the increase of Cl- concentration, the mineralization degree of BCP is obviously inhibited. Through the identification of GC-MS products, it is known that in the presence of chlorine ion, with the degradation of BCP, a variety of chlorinated by-products have been generated, but no polybrominated products are found. This may be with the halogen. The electronegativity correlation (FClBrI) of the substituents is that the stronger the electronegativity of halogenated groups, the easier the halogenated organic compounds are to oxidize dehalogenation.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 許傳經(jīng),劉建琳,袁力;毛細(xì)管柱氣相色譜法測(cè)定水中痕量氯酚[J];中國(guó)環(huán)境監(jiān)測(cè);1989年04期

2 汪世龍,李敏,劉士妲,孫曉宇,李文哲,倪亞明,姚思德,王文峰;γ輻照研究4-氯酚的降解[J];科學(xué)技術(shù)與工程;2004年08期

3 張?zhí)煸?安淼;周琪;;生物泥漿體系修復(fù)氯酚污染的土壤[J];污染防治技術(shù);2004年01期

4 杜長(zhǎng)明;嚴(yán)建華;李曉東;岑可法;倪明江;衛(wèi)櫻蕾;B.G.Cheron;;氣液滑動(dòng)弧放電降解4-氯酚溶液的研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2006年13期

5 陳霞;王家德;梅瑜;陳建孟;;聲電協(xié)同氧化氯酚的實(shí)驗(yàn)研究[J];環(huán)境工程學(xué)報(bào);2007年01期

6 王旭明;王建龍;;利用固相反硝化同時(shí)去除水中硝酸鹽和4-氯酚[J];環(huán)境科學(xué);2009年05期

7 董軍;孫麗娜;陳若虹;梁銳杰;;珠江口地區(qū)表層水中氯酚化合物污染研究[J];環(huán)境科學(xué)與技術(shù);2009年07期

8 朱冬梅;詹健;;水中氯酚的去除研究進(jìn)展[J];江西化工;2009年04期

9 閆蕾;安小寧;;去除水相中4-氯酚的研究進(jìn)展[J];廣東化工;2013年09期

10 田笠卿;曾昭琪;陳子濤;;雙氯酚在冷卻水中的降解條件[J];工業(yè)水處理;1981年01期

相關(guān)會(huì)議論文 前10條

1 黃國(guó)蘭;朱瑞芝;;污水中氯酚的測(cè)定[A];天津市第六屆色譜學(xué)術(shù)交流會(huì)論文集[C];1989年

2 吳庭年;王志偉;陳圣凡;;線性掃描伏安法分析量測(cè)水中微量氯酚化合物[A];第四屆海峽兩岸分析化學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年

3 艾智慧;楊鵬;陸曉華;;微波輻照對(duì)高級(jí)氧化技術(shù)降解4-氯酚的協(xié)同效應(yīng)研究[A];第二屆全國(guó)環(huán)境化學(xué)學(xué)術(shù)報(bào)告會(huì)論文集[C];2004年

4 徐軍;單軍;姜炳琪;季榮;崔益斌;;蚯蚓對(duì)2,4-DCP在土壤中降解轉(zhuǎn)化的影響[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國(guó)學(xué)術(shù)研討會(huì)論文集[C];2010年

5 王敏;楊睿媛;沈忠群;王文鋒;;4—氯酚溶液的輻照降解研究[A];四川成都輻射研究與輻射工藝研討會(huì)論文集[C];2005年

6 計(jì)軍平;張文;黃愛(ài)群;陳玲;;以單氯酚馴化的厭氧顆粒污泥降解2,4-二氯酚的試驗(yàn)研究[A];持久性有機(jī)污染物論壇2006暨第一屆持久性有機(jī)污染物全國(guó)學(xué)術(shù)研討會(huì)論文集[C];2006年

7 王海濤;李清彪;洪金慶;葉美玲;邵文堯;高志鋒;;生物膜水解-好氧循環(huán)組合工藝降解氯酚研究[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(下)[C];2006年

8 巢細(xì)娟;盛治國(guó);朱本占;;多氯酚與釕(Ⅱ)多吡啶配合物的協(xié)同毒性機(jī)理研究[A];第六屆全國(guó)環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年

9 張紅雨;張杰;黃秀華;;固相微萃取/GG/ECD直接測(cè)定水中的三種氯酚[A];湖北省土木建筑學(xué)會(huì)學(xué)術(shù)論文集(2000-2001年卷)[C];2002年

10 陳霞;王家德;;聲電聯(lián)合氧化2-氯酚的實(shí)驗(yàn)研究[A];第四屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2005年

相關(guān)博士學(xué)位論文 前9條

1 方長(zhǎng)玲;高鹽環(huán)境氯酚氧化降解體系中有機(jī)鹵代物生成機(jī)制與毒性評(píng)價(jià)研究[D];東華大學(xué);2017年

2 杜連柱;氯酚污染地下水的強(qiáng)化原位生物修復(fù)技術(shù)[D];吉林大學(xué);2008年

3 趙玲;二氧化錳體系下氯酚的非生物轉(zhuǎn)化研究[D];中國(guó)科學(xué)院研究生院(廣州地球化學(xué)研究所);2006年

4 叢燕青;氯酚的電化學(xué)降解行為及治理研究[D];浙江大學(xué);2005年

5 陳巖;氯酚類污染物與牛血清白蛋白相互作用的表觀及微觀效應(yīng)研究[D];武漢大學(xué);2011年

6 劉杰;納米Fe_3O_4及其復(fù)合材料催化過(guò)氧化物去除水中氯酚的研究[D];哈爾濱工業(yè)大學(xué);2014年

7 薛軍;輻射分解處理氯酚類有機(jī)污染物的研究[D];清華大學(xué);2007年

8 衛(wèi)建軍;納米級(jí)Pd/Fe雙金屬對(duì)水中氯酚的催化脫氯研究[D];浙江大學(xué);2004年

9 王曉東;去除水中微量酚類化合物的研究[D];天津大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 張艷芳;氯酚前驅(qū)物形成二惡英機(jī)理的理論研究[D];山東大學(xué);2015年

2 宗盼盼;改性粉煤灰復(fù)合催化劑制備及降解2-氯酚研究[D];大連理工大學(xué);2015年

3 王樂(lè)樂(lè);水溶液介質(zhì)中氯酚類有機(jī)污染物的生物修復(fù)研究[D];遼寧工業(yè)大學(xué);2016年

4 吉祖峰;納米Pd/Fe雙金屬顆粒的制備及其在氯酚類化合物還原脫氯中的應(yīng)用[D];南京師范大學(xué);2013年

5 王巖;電化學(xué)還原氧化工藝降解4-氯酚廢水的動(dòng)力學(xué)及毒性研究[D];北京林業(yè)大學(xué);2016年

6 王冰霜;池州市貴池區(qū)水源水氯酚的風(fēng)險(xiǎn)評(píng)價(jià)和社區(qū)居民氯酚內(nèi)暴露水平研究[D];安徽醫(yī)科大學(xué);2016年

7 石歡歡;漆酶催化降解殺菌劑芐氯酚和雙氯酚的機(jī)理研究[D];南京大學(xué);2016年

8 歐陽(yáng)培毓;環(huán)境中氯酚類和異噻唑啉酮類有機(jī)污染物的分析方法研究[D];華南農(nóng)業(yè)大學(xué);2016年

9 張科欣;基于碳納米管修飾電極的制備及其在氯酚類污染物檢測(cè)中的應(yīng)用[D];東北師范大學(xué);2016年

10 楊婷;生物電化學(xué)系統(tǒng)處理4-氯酚廢水的實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2012年

,

本文編號(hào):1968373

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1968373.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e3283***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com