本文選題:量子計量基準 + 能量天平; 參考:《哈爾濱工業(yè)大學(xué)》2017年博士論文
【摘要】:質(zhì)量量子計量基準研究于2012年被《Nature》雜志評為世界六大難題之一,是目前國際計量研究領(lǐng)域的熱點。中國計量科學(xué)研究院于2006年提出基于能量天平法的千克溯源方案,該方案通過機械能與電磁能的平衡來實現(xiàn)質(zhì)量單位的復(fù)現(xiàn)。能量天平法原理式中存在四種表征線圈狀態(tài)的特征矢量,分別為線圈受到的安培力和重力、線圈的運動方向以及線圈位移測量所用激光束的方向。上述特征矢量需對準于同一方向上,否則能量天平法測量結(jié)果將包含由特征矢量偏離對準狀態(tài)引起的對準能量誤差。針對對準誤差測量補償?shù)木葲Q定了千克溯源至普朗克常數(shù)的準確性,因此如何精確測量對準誤差是當前能量天平方案亟待解決的核心問題。本課題在能量天平方案原理的基礎(chǔ)上,通過研究能量天平特征矢量對準誤差的物理來源,建立能量天平對準誤差的數(shù)學(xué)模型;谠摂(shù)學(xué)模型,確定了線圈垂向運動直線度和線圈位移測量光束的垂向偏角是對準誤差的兩項主要誤差分量,并針對上述兩項誤差分量分別提出對應(yīng)的測量補償方法,從而通過對對準誤差的精確補償保證能量天平方案的普朗克常數(shù)測量結(jié)果的準確性。主要研究內(nèi)容如下:針對目前能量天平法存在線圈特征矢量對準問題的原理內(nèi)涵尚不明確的問題,首先研究對準誤差的產(chǎn)生機理,發(fā)現(xiàn)對準誤差主要由線圈水平安培力做功、電磁轉(zhuǎn)矩做功和線圈位移測量光束存在垂向偏角所引起,并確立了上述三者引起的能量誤差之和與對準誤差的相等關(guān)系,從而建立能量天平線圈特征矢量對準誤差的數(shù)學(xué)模型。其次,在天平線圈的懸掛結(jié)構(gòu)中加入柔性鉸鏈,實現(xiàn)了線圈所受水平安培力和電磁轉(zhuǎn)矩在作用效果上的解耦,并結(jié)合靜止線圈的轉(zhuǎn)矩平衡方程推導(dǎo)水平安培力和電磁轉(zhuǎn)矩的表達式,進而可根據(jù)該表達式確定水平安培力和電磁轉(zhuǎn)矩對對準誤差的影響權(quán)重。最后,基于該對準誤差模型對能量天平對準誤差分量的量值進行計算,發(fā)現(xiàn)線圈垂向運動直線度與線圈位移測量光束的垂向偏角所引起的誤差是對準誤差的兩項亟待測量補償?shù)闹饕`差分量。針對能量天平線圈存在垂向運動直線度而引起對準誤差的問題,提出了一種基于垂絲基準的垂向運動直線度測量方法。該方法首先以重錘牽引的導(dǎo)電細絲作為垂向運動測量基準,并將該基準與線圈上的水平外圓柱面電容極板合并構(gòu)成線面式電容傳感器,從而可利用該電容傳感器對線圈垂向運動直線度進行精確測量。其次分析了外圓柱面極板邊緣效應(yīng)對線面式電容傳感器測量結(jié)果的影響,并利用有限元仿真對該影響引入的誤差進行評估,結(jié)果表明該影響引入的測量誤差可忽略不計。實驗結(jié)果證明,該方法對垂向運動直線度的測量標準不確定度從現(xiàn)有方法的2.5μm減小為1.7μm。針對線圈垂向位移測量所用激光束存在垂向偏角從而引起對準誤差的問題,提出了一種基于液面法線豎直基準的光束垂向偏角測量方法。該方法首先以硅油液面法線作為光束垂向偏角測量基準,并將液面法線基準與光束平行度檢測方法相結(jié)合對光束的垂向偏角進行精確測量。其次通過對液面不同區(qū)域的表面曲率變化進行測量,獲取環(huán)繞液面中心40×40mm2區(qū)域內(nèi)的液面法線基準的方向不確定度,由測量結(jié)果可知該方向不確定度大小約為3.2μrad。實驗結(jié)果表明,該測量方法的測量標準不確定度從現(xiàn)有方法的25μrad減小為11μrad。最后,基于能量天平實驗裝置,本課題分別對特征矢量對準誤差數(shù)學(xué)模型、垂向運動直線度測量方法和光束垂向偏角測量方法進行實驗驗證。實驗結(jié)果表明,對準誤差數(shù)學(xué)模型不確定度和本文提出的兩種對準測量方法的不確定度所引起的能量天平法測量結(jié)果的不確定度滿足能量天平的精度要求。
[Abstract]:The quality quantum measurement datum is one of the six major problems in the world in 2012 by
magazine. It is a hot spot in the field of international metrology. In 2006, China Institute of Metrology Institute proposed a kilogram traceability scheme based on energy balance method in 2006. The scheme realized the reappearance of the mass unit through the balance of mechanical energy and electromagnetic energy. There are four characteristic vectors of the state of the coil in the balance method, which are the ampere force and the gravity of the coil, the direction of the motion of the coil and the direction of the laser beam used in the measurement of the coil displacement. The above feature vectors should be aligned in the same direction, otherwise the measurement results of the energy balance method will include the deviation from the alignment of the eigenvectors. The error of the alignment energy caused by the state. The accuracy of the compensation for the measurement of the alignment error determines the accuracy of the trace to the Planck constant. So how to accurately measure the alignment error is the key problem to be solved urgently. On the basis of the energy balance scheme, this topic studies the energy balance characteristic vector. The mathematical model of the alignment error of the energy balance is established by the physical source of the error. Based on this mathematical model, the vertical deflection of the coil and the vertical deflection angle of the coil displacement measurement beam are two main error components of the alignment error, and the corresponding measurement compensation method is put forward for the above two items of error. The accuracy of the accurate compensation for the alignment error ensures the accuracy of the Planck constant measurement results of the energy balance scheme. The main contents are as follows: in view of the problem that the principle of the current energy balance method is not clear, the mechanism of the alignment error is first studied, and the alignment error is mainly caused by the coil. The horizontal ampere force is done, the electromagnetic torque doing work and the coil displacement measurement beam are caused by the vertical deflection angle, and the equal relation between the energy error and the alignment error caused by the above three is established, thus the mathematical model of the alignment error of the energy balance coil is established. Secondly, the flexibility of the balance coil is added to the suspension structure. The hinges have realized the decoupling of the water safety and electromagnetic torque in the coil, and the expression of the horizontal ampere force and electromagnetic torque is derived from the torque balance equation of the static coil, and then the influence weight of the horizontal ampere force and electromagnetic torque on the alignment error can be determined according to the expression. Finally, the alignment error is based on the error. The model calculates the amount of the error component of the energy balance, and finds that the error caused by the vertical motion straightness of the coil and the vertical deflection angle of the coil displacement is the two main error component of the alignment error, which needs to be measured. The problem of the alignment error caused by the vertical motion straightness of the energy balance coil is caused by the vertical motion. A vertical motion straightness measurement method based on the vertical wire base is proposed. The method first takes the conductive wire drawn by a heavy hammer as the vertical motion measurement datum, and combines the reference with the horizontal cylindrical capacitor pole on the coil to form a line surface capacitance sensor, and the vertical motion of the coil can be used by the capacitance sensor. The accuracy of the straightness is measured. Secondly, the influence of the edge effect of the cylindrical cylindrical plate on the measurement results of the line surface capacitance sensor is analyzed, and the error introduced by the finite element simulation is evaluated. The results show that the measurement error introduced by the influence is negligible. The experimental results show that the method has the vertical motion straightness. The measurement standard uncertainty is reduced to 1.7 m from the existing method to 1.7 mu m. The vertical deflection angle of the laser beam in the vertical displacement measurement of the coil is caused by the vertical deflection of the laser beam. A vertical deflection angle measurement method based on the vertical datum of the liquid surface is proposed. The method first uses the liquid surface of the silicon oil surface as the vertical deflection of the beam. The angle measurement datum is used to measure the vertical deflection angle of the beam by combining the liquid surface normal datum and the beam parallelism detection method. Secondly, by measuring the surface curvature changes in different areas of the liquid surface, the uncertainty of the direction of the liquid surface of the liquid surface in the center of the 40 x 40mm2 around the center of the liquid surface is obtained, and the results can be seen from the measurement results. The experimental results of the direction uncertainty about 3.2 mu rad. show that the measurement standard uncertainty of the measurement method is reduced to 11 mu rad. from 25 rad of the existing method. Based on the energy balance experimental device, this subject is respectively on the mathematical model of the alignment error of the characteristic vector, the vertical motion straightness measurement method and the beam vertical deflection angle measurement square respectively. The experimental results show that the uncertainty of the mathematical model of the alignment error and the uncertainty of the two kinds of alignment methods proposed in this paper can satisfy the precision requirements of the energy balance.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TH715
【相似文獻】
相關(guān)期刊論文 前10條
1 張鐘華;量子計量基準——歷史及進展[J];中國計量;2002年08期
2 張鐘華;;量子計量基準概況及研究進展[J];中國測試;2009年01期
3 張鐘華;;量子計量基準的現(xiàn)狀[J];儀器儀表學(xué)報;2011年01期
4 張鐘華;量子計量基準與基本物理常數(shù)[J];工業(yè)計量;2001年05期
5 張鐘華;二十世紀的量子計量基準[J];世界科技研究與發(fā)展;1996年02期
6 張鐘華;量子物理與量子計量基準[J];中國計量;1997年10期
7 張鐘華;;量子計量基準及其進展——現(xiàn)代計量科學(xué)專題之一[J];物理通報;2001年04期
8 張鐘華;;量子計量基準及SI基本單位的重新定義[J];電子測量與儀器學(xué)報;2007年01期
9 張鐘華;;量子計量基準發(fā)展的最新動向 基本物理常數(shù)與SI基本單位的重新定義[J];中國計量;2006年03期
10 ;行業(yè)動態(tài)[J];儀器儀表標準化與計量;2004年05期
相關(guān)會議論文 前1條
1 鄧小偉;;對量子計量基準的認識[A];2013年江蘇省計量測試學(xué)會學(xué)術(shù)會議論文集[C];2013年
相關(guān)重要報紙文章 前6條
1 本報記者 楊蕾;量子計量基準研究大有可為[N];中國質(zhì)量報;2013年
2 記者 楊蕾;量子計量基準研究取得新突破[N];中國質(zhì)量報;2010年
3 本報記者 王菡娟;一千克究竟有多重?[N];人民政協(xié)報;2012年
4 盧敬叁;“量子化霍爾電阻基準”簡介[N];中國質(zhì)量報;2008年
5 本報記者 楊蕾;計量的根本是“準”[N];中國質(zhì)量報;2008年
6 本報記者 高晨;堪稱工業(yè)之眼 43個項目獲評計量科技進步獎[N];中國工業(yè)報;2014年
相關(guān)博士學(xué)位論文 前1條
1 曾濤;基于能量天平法的質(zhì)量量子計量基準特征矢量對準技術(shù)[D];哈爾濱工業(yè)大學(xué);2017年
,
本文編號:1798520
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1798520.html