鈦表面陽(yáng)極氧化膜結(jié)構(gòu)特性及耐蝕性研究
本文選題:工業(yè)純鈦 + 陽(yáng)極氧化。 參考:《昆明理工大學(xué)》2017年博士論文
【摘要】:陽(yáng)極氧化制備的Ti表面氧化膜具有出色的耐蝕性能、良好的生物相容性和優(yōu)異的光催化性等優(yōu)點(diǎn),其制備過(guò)程簡(jiǎn)單、成本低、污染小,因此被廣泛地應(yīng)用于腐蝕防護(hù)、生物醫(yī)學(xué)、新能源材料、光水解制氫等諸多領(lǐng)域。本論文以工業(yè)純鈦(TA2)為基體材料,對(duì)其陽(yáng)極氧化過(guò)程開(kāi)展研究。通過(guò)對(duì)TA2表面氧化膜形貌、結(jié)構(gòu)、結(jié)晶行為和電化學(xué)特性的表征和計(jì)算,分析氧化膜結(jié)構(gòu)特征和相構(gòu)成,研究氧化膜的微觀結(jié)構(gòu)、成膜過(guò)程和結(jié)晶機(jī)理。為此,本論文在0.5 MH2SO4電解液中,系統(tǒng)研究陽(yáng)極氧化電位,陽(yáng)極氧化次數(shù)以及機(jī)械研磨對(duì)氧化膜結(jié)構(gòu)和性能的影響。采用XPS深度濺射法,定量分析陽(yáng)極氧化膜不同深度下Ti氧化物的結(jié)構(gòu)、價(jià)態(tài)和含量;建立氧化膜中,各種氧化物以及氫氧化物的含量與氧化膜深度的關(guān)系;研究了氧化膜的結(jié)構(gòu)特性、電化學(xué)特性和缺陷的擴(kuò)散系數(shù)特性,構(gòu)建氧化膜形成的點(diǎn)陣缺陷模型,研究形成機(jī)理和影響因素。結(jié)果表明,隨著電位的提高,氧化膜厚度增大,結(jié)晶率提高,耐蝕性能增強(qiáng)。高電位促進(jìn)氧化膜中Ti4+化合物的形成和銳鈦礦形核。氧化膜由Ti02、Ti(OH)4、TiO2H2O、Ti203和TiO等組成,含量隨深度呈連續(xù)變化。氧化膜的生成與O空位和Ti陽(yáng)離子間隙物在氧化膜中的擴(kuò)散有關(guān)。在Ti/氧化膜界面發(fā)生氧空位的生成,氧化膜/溶液界面發(fā)生氧空位的湮滅,Ti陽(yáng)離子間隙物在氧化膜/溶液界面生成,Ti/氧化膜界面上湮滅,氧化膜同時(shí)向基體和溶液方向生長(zhǎng)。在上述研究基礎(chǔ)上,針對(duì)陽(yáng)極氧化膜孔隙率較高的情況,對(duì)TA2進(jìn)行二次陽(yáng)極氧化處理。采用二次氧化陽(yáng)極氧化處理,可以提高氧化膜的厚度,降低孔隙率。首次加壓為30 V,終電位為40 V時(shí),氧化膜厚度提高了約17.3%,表面微孔基本消失。首次加壓處理形成了較為致密的初始氧化膜,在二次加壓處理時(shí),降低了析氧反應(yīng)的密度,從而使二次氧化形成的氧化膜孔隙率明顯降低。二次氧化處理有助于氧化膜向基體一側(cè)生長(zhǎng),導(dǎo)致氧化膜厚度增加。同時(shí),二次氧化處理增強(qiáng)了 TA2的耐蝕性,二次陽(yáng)極氧化首次加壓30 V,二次加壓40 V處理后樣品的自腐蝕電位和自腐蝕電流密度,比直接加壓40 V樣品的自腐蝕電位和自腐蝕電流密度分別提高了 0.16 VSCE,下降了約一個(gè)數(shù)量級(jí),可以減少腐蝕傾向,降低腐蝕速率。由于表面形貌對(duì)氧化膜的形成過(guò)程有顯著影響,對(duì)TA2進(jìn)行機(jī)械研磨處理,細(xì)化表面晶粒、增加壓應(yīng)力、缺陷和表面電子能密度,提高表面活性。機(jī)械研磨處理可以明顯增加氧化膜厚度,提高其耐蝕性。研究發(fā)現(xiàn)表面機(jī)械研磨處理可以改變氧化膜的形核方式,由于TA2表面能的提高降低了不同Ti化合物的形核功,形核過(guò)程由連續(xù)形核轉(zhuǎn)變?yōu)樗矔r(shí)形核,形核率顯著提高;同時(shí)高的表面能為氧化膜的生長(zhǎng)提供足夠的能量,加速了空位和離子的擴(kuò)散過(guò)程,導(dǎo)致O空位和Ti陽(yáng)離子間隙物在氧化膜中的擴(kuò)散速率,比未經(jīng)過(guò)表面機(jī)械研磨處理樣品提高了 2個(gè)數(shù)量級(jí)。最后形成的氧化膜和直接陽(yáng)極氧化的氧化膜相比,自腐蝕電位提高了0.462 VSCE,自腐蝕電流密度下降約0.005 A.cm-2%。陽(yáng)極氧化TA2氧化膜在NaCl溶液中,氧化膜孔洞內(nèi)外易形成"氧濃差電池",使Cl-向孔洞處移動(dòng),孔洞內(nèi)部形成了無(wú)氧、低pH和高Cl-濃度的腐蝕環(huán)境,造成孔內(nèi)氧化膜的破裂,使Ti基體暴露在腐蝕介質(zhì)中,平衡電位迅速下降,和孔外部構(gòu)成"接觸腐蝕電偶"。"腐蝕電偶"對(duì)腐蝕加速效果的影響和孔隙率有關(guān),孔隙率較低時(shí),腐蝕速率明顯降低。二次陽(yáng)極氧化處理可以明顯改善表面結(jié)構(gòu),降低氧化膜孔隙率,減小孔洞對(duì)氧化膜耐蝕性的影響。當(dāng)表面孔洞幾乎消失時(shí),氧化膜中的缺陷密度成為影響氧化膜耐蝕性的主要因素,NaCl溶液中的Cl-可以吸附在氧化膜中的點(diǎn)缺陷上,擾亂了 Mott-Schottkypair反應(yīng),在Ti基體/氧化膜界面上產(chǎn)生空隙,造成氧化膜和Ti基底分離,進(jìn)而在內(nèi)部壓應(yīng)力的作用下,導(dǎo)致了氧化膜破裂。機(jī)械研磨處理通過(guò)改變氧化膜形核模式和促進(jìn)O空位和Ti陽(yáng)離子間隙物的擴(kuò)散等方式,明顯降低了氧化膜的缺陷密度,有效抑制了 Cl-在氧化膜表面的吸附,最終提高了氧化膜的耐蝕性。
[Abstract]:The Ti surface oxide film prepared by anodic oxidation has excellent corrosion resistance, good biocompatibility and excellent photocatalytic activity. Its preparation process is simple, low cost and low pollution. Therefore, it is widely used in many fields such as corrosion protection, biomedicine, new energy materials, and light hydrolytic hydrogen production. This paper is based on industrial pure titanium (TA2). The anodic oxidation process of the matrix was studied. By characterizing and calculating the morphology, structure, crystallization behavior and electrochemical properties of the TA2 surface oxide film, the structure characteristics and phase composition of the oxide film were analyzed. The microstructure, the film forming process and the crystallization mechanism of the oxide film were studied. In this paper, the anode was systematically studied in the 0.5 MH2SO4 electrolyte. The effect of oxidation potential, anodic oxidation number and mechanical grinding on the structure and properties of the oxide film. The structure, valence and content of Ti oxide under different depths of anodic oxide film were quantitatively analyzed by XPS depth sputtering; the relationship between the content of various oxides and hydroxides in the oxide film and the depth of the oxide film was established; and the oxide film was studied. The structure characteristics, electrochemical properties and the diffusion coefficient characteristics of the defects are used to construct a lattice defect model formed by the oxide film and study the formation mechanism and influencing factors. The results show that the thickness of the oxide film increases with the increase of the potential, the crystallization rate increases, and the corrosion resistance is enhanced. The high potential promotes the formation of Ti4+ compounds in the oxide film and the anatase nucleation. The oxide film consists of Ti02, Ti (OH) 4, TiO2H2O, Ti203 and TiO. The content of the oxide film is continuously changed with the depth. The formation of the oxide film is related to the diffusion of the O vacancy and the Ti cation gap in the oxide film. The formation of oxygen vacancies in the Ti/ oxide film interface, the annihilation of oxygen vacancies in the oxide film / solution interface, and the Ti cation gap in the oxide film / solution. The interface is formed, the Ti/ oxide film is annihilated at the interface, and the oxide film grows to the direction of the matrix and the solution. On the basis of the above study, two anodized TA2 treatments are carried out for the anode oxidation film with high porosity. The thickness of the oxide film can be increased and the porosity can be reduced by the two oxidation anodizing treatment. It is first pressurized to 30 V, When the final potential is 40 V, the thickness of the oxide film increases about 17.3% and the surface micropores basically disappear. The initial pressure treatment forms a more compact initial oxide film, which reduces the density of the oxygen evolution reaction at the two times of pressure treatment, thus reducing the porosity of the oxide film formed by the two oxidation. The two oxidation treatment helps the oxide film to the matrix. The growth of the oxide film increases the thickness of the oxide film. At the same time, the corrosion resistance of TA2 is enhanced by the two oxidation treatment. The self corrosion potential and the self corrosion current density of the samples after the two anodization for the first time are 30 V and the two times pressurized 40 V. The self corrosion potential and the self corrosion current density of the samples with direct pressure 40 V are increased by 0.16 VSCE, respectively. The corrosion tendency and corrosion rate can be reduced by about one order of magnitude. The surface morphology has a significant influence on the formation process of the oxide film. The surface grain is refined, the surface grain is refined, the pressure stress, the defect and surface electron energy density are increased, and the surface activity is improved because the surface morphology has a significant influence on the formation of the oxide film. The thickness of the oxide film can be obviously increased by mechanical grinding. It is found that the surface mechanical grinding can change the nucleation of the oxide film. Because of the increase of the TA2 surface energy, the nucleation work of different Ti compounds is reduced. The nucleation process is transformed from the continuous nucleation to the instantaneous nucleation, and the nucleation rate is significantly increased. At the same time, the high surface can provide enough energy for the growth of the oxide film and accelerate the growth of the oxide film. The diffusion process of the vacancy and ion causes the diffusion rate of the O vacancy and the Ti cation gap in the oxide film, which is 2 orders of magnitude higher than that without the surface mechanical grinding. In the end, the corrosion potential of the oxide film is 0.462 VSCE higher than that of the oxide film directly anodized, and the corrosion current density decreases by about 0. 05 A.cm-2%. anodized TA2 oxide film in the NaCl solution, the oxygen concentration difference battery is easily formed inside and outside the pores of the oxide film, which causes the Cl- to move to the hole. The corrosion environment of oxygen free, low pH and high Cl- concentration is formed inside the hole, resulting in the rupture of the oxide film in the hole and exposing the Ti matrix to the corrosive medium, the equilibrium potential drops rapidly, and the pore structure is formed outside the hole. "Contact corrosion galvanic". "Corrosion galvanic" affects the effect of corrosion acceleration and porosity, and the corrosion rate decreases obviously when the porosity is low. The two anodized treatment can obviously improve the surface structure, reduce the porosity of the oxide film and reduce the effect of holes on the corrosion resistance of the oxide film. The defect density becomes the main factor affecting the corrosion resistance of the oxide film. The Cl- in the NaCl solution can adsorb on the point defects in the oxide film, disrupt the Mott-Schottkypair reaction, produce the gap in the interface of the Ti matrix / oxide film, and cause the separation of the oxide film and the Ti substrate, which leads to the rupture of the oxide film under the action of internal pressure. By changing the nucleation mode of the oxide film and promoting the diffusion of the O vacancy and the Ti cation gap, the grinding treatment obviously reduced the defect density of the oxide film, effectively inhibited the adsorption of Cl- on the surface of the oxide film, and finally improved the corrosion resistance of the oxide film.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.451
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 曹楚南;官素珍;;鋁的陽(yáng)極氧化膜的孔率與密度的研究[J];材料保護(hù);1965年06期
2 肖珩,樊自栓,徐源,張文奇;鋁的冷封閉硫酸陽(yáng)極氧化膜組成[J];北京科技大學(xué)學(xué)報(bào);1991年05期
3 紀(jì)紅;李永豐;樊志罡;朱祖芳;;變形法評(píng)定陽(yáng)極氧化膜抗破裂性標(biāo)準(zhǔn)解析[J];理化檢驗(yàn)(物理分冊(cè));2014年01期
4 劉磊,胡文彬,吳建生;鋁合金陽(yáng)極氧化膜的微觀結(jié)構(gòu)分析[J];上海交通大學(xué)學(xué)報(bào);2001年02期
5 劉磊,胡文彬,吳建生;鋁合金陽(yáng)極氧化膜的微觀結(jié)構(gòu)分析[J];上海交通大學(xué)學(xué)報(bào);2001年02期
6 胥澤奇,殷明;槍用鋁合金陽(yáng)極氧化膜耐曬性試驗(yàn)研究[J];表面技術(shù);2003年06期
7 郟宇飛;曠亞非;周海暉;胡樂(lè)暉;;鋁高壓陽(yáng)極氧化膜微觀形貌影響因素的研究[J];電鍍與精飾;2006年02期
8 趙景茂;王珊珊;郭超;趙旭輝;左禹;;鋁合金陽(yáng)極氧化膜雙向脈沖封閉工藝[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
9 朱祖芳;;鋁合金建筑型材陽(yáng)極氧化膜的性能分析及質(zhì)量評(píng)價(jià)[J];電鍍與涂飾;2008年04期
10 周峗;宣天鵬;汪亮;張萬(wàn)利;;鋁合金陽(yáng)極氧化膜的封閉方法[J];電鍍與精飾;2011年04期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前10條
1 倪似愚;;鋁表面功能性陽(yáng)極氧化膜的應(yīng)用及展望[A];2002年全國(guó)電子電鍍年會(huì)論文集[C];2002年
2 劉洲;劉德林;何玉懷;劉昌奎;;以貯存件探討陽(yáng)極氧化膜耐蝕壽命評(píng)估方法[A];面向航空試驗(yàn)測(cè)試技術(shù)——2013年航空試驗(yàn)測(cè)試技術(shù)峰會(huì)暨學(xué)術(shù)交流會(huì)論文集[C];2013年
3 徐洮;趙家政;陳建敏;;鋁多孔質(zhì)陽(yáng)極氧化膜擴(kuò)孔行為的電鏡研究[A];第八次全國(guó)電子顯微學(xué)會(huì)議論文摘要集(Ⅱ)[C];1994年
4 錢建才;許斌;鄒洪慶;呂基成;吳厚昌;方敏;;聚苯胺摻雜鋁銅合金陽(yáng)極氧化膜性能研究[A];第九屆全國(guó)轉(zhuǎn)化膜及表面精飾學(xué)術(shù)年會(huì)論文集[C];2012年
5 王曉波;閻逢元;張愛(ài)民;馮治中;陳建敏;;自潤(rùn)滑鋁硅合金陽(yáng)極氧化膜的摩擦學(xué)特性研究[A];第七屆全國(guó)摩擦學(xué)大會(huì)論文集(二)[C];2002年
6 楊瀟薇;王桂香;董國(guó)君;龔凡;;植酸對(duì)鎂鋰合金陽(yáng)極氧化膜的影響[A];2009年全國(guó)電子電鍍及表面處理學(xué)術(shù)交流會(huì)論文集[C];2009年
7 賀春林;國(guó)玉軍;劉常升;李鳳琴;才慶魁;;顆粒增強(qiáng)鋁基復(fù)合材料陽(yáng)極氧化膜的耐蝕性[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
8 楊瀟薇;王桂香;董國(guó)君;龔凡;;硅溶膠對(duì)鎂鋰合金陽(yáng)極氧化膜的影響[A];2009年全國(guó)電子電鍍及表面處理學(xué)術(shù)交流會(huì)論文集[C];2009年
9 戴丹;王慧;李建忠;烏學(xué)東;;環(huán)保型鎂合金陽(yáng)極氧化膜的耐腐蝕性能研究[A];2008年全國(guó)腐蝕電化學(xué)及測(cè)試方法學(xué)術(shù)交流會(huì)論文摘要集[C];2008年
10 曹發(fā)和;施彥彥;張麗君;張昭;張鑒清;;環(huán)?焖冁V合金陽(yáng)極氧化膜的制備與耐蝕性能研究[A];2006年全國(guó)腐蝕電化學(xué)及測(cè)試方法學(xué)術(shù)會(huì)議論文集[C];2006年
中國(guó)重要報(bào)紙全文數(shù)據(jù)庫(kù) 前1條
1 朱祖芳;鋁型材氧化膜性能分析及質(zhì)量評(píng)價(jià)[N];中國(guó)有色金屬報(bào);2007年
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前8條
1 溝引寧;鎂合金表面Al_2O_3納米粒子增強(qiáng)陽(yáng)極氧化膜成膜機(jī)制及性能研究[D];重慶大學(xué);2015年
2 付天琳;鈦表面陽(yáng)極氧化膜結(jié)構(gòu)特性及耐蝕性研究[D];昆明理工大學(xué);2017年
3 葉皓;雙羥基金屬氧化物前驅(qū)體法引入合金元素制備鋁復(fù)合陽(yáng)極氧化膜及其性能研究[D];北京化工大學(xué);2006年
4 劉偉華;熱循環(huán)作用下鋁合金陽(yáng)極氧化膜的開(kāi)裂行為與機(jī)理研究[D];北京化工大學(xué);2008年
5 張金生;鋁合金陽(yáng)極氧化膜表面狀態(tài)與粘接性能研究[D];北京化工大學(xué);2007年
6 田連朋;幾種外加離子對(duì)鋁陽(yáng)極氧化膜電化學(xué)性質(zhì)的影響[D];北京化工大學(xué);2006年
7 劉章生;氮化鋁顆粒增強(qiáng)鋁基復(fù)合材料的腐蝕行為研究[D];上海交通大學(xué);2006年
8 任建軍;鋁陽(yáng)極氧化膜的制備及自組織行為研究[D];北京化工大學(xué);2012年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 陳小麗;鋁鋰合金酒石酸—硫酸陽(yáng)極氧化膜的腐蝕行為及機(jī)理研究[D];重慶理工大學(xué);2016年
2 寧淑紅;摻雜鈰鹽的溶膠與磷酸鹽復(fù)合處理對(duì)鋁合金陽(yáng)極氧化膜耐蝕性的影響[D];西南交通大學(xué);2017年
3 孟祥鳳;鋁合金陽(yáng)極氧化膜的制備及其性能研究[D];中國(guó)計(jì)量學(xué)院;2014年
4 王利敏;鎂合金的腐蝕及其陽(yáng)極氧化膜耐蝕性研究[D];南京航空航天大學(xué);2006年
5 杜志惠;醫(yī)用鈦合金表面陽(yáng)極氧化膜的制備工藝及性能研究[D];天津大學(xué);2004年
6 崔立波;鎂合金陽(yáng)極氧化膜性能的電化學(xué)研究[D];重慶大學(xué);2011年
7 陳爽;提高鋁合金陽(yáng)極氧化膜在高溫下的抗開(kāi)裂性能研究[D];北京化工大學(xué);2009年
8 王珊珊;鋁合金陽(yáng)極氧化膜的脈沖封閉工藝與耐蝕性研究[D];北京化工大學(xué);2007年
9 陳勝利;鋁合金陽(yáng)極氧化膜的外加電壓封閉工藝及耐蝕性研究[D];北京化工大學(xué);2008年
10 劉鵬;陽(yáng)極氧化膜的擊穿機(jī)制和納米孔道形成機(jī)理的研究[D];南京理工大學(xué);2012年
,本文編號(hào):1779638
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1779638.html