碳納米管及其限域體系的高壓結構相變和超硬相研究
本文選題:金剛石對頂砧 切入點:高壓 出處:《吉林大學》2017年博士論文
【摘要】:碳納米管作為一維納米材料的典型代表,其中空的一維納米孔道為研究納米限域體系提供了理想的模板。限域環(huán)境下碳納米管內部的分子會展示出不同于體材料的新結構和新性質。高壓可以有效的調控原子間距離,從而影響其相互作用及成鍵形式,進而導致物質結構、性質的變化,是合成新材料、發(fā)現(xiàn)新現(xiàn)象的重要手段。將碳納米管及其限域體系與高壓手段相結合開展實驗研究,不僅有助于豐富和深化我們對碳材料新特性及其主客體之間相互作用的認識,揭示它們高壓相變的物理機制,而且為我們構筑具有新型結構和性質的碳材料提供了新的思路和途徑。目前關于碳納米管及其限域富勒烯和納米帶體系在高壓下的結構轉變機制和性質變化還不清楚,以碳納米管作為初始碳源去構筑新碳結構的研究還很少。針對這一問題,本文對多壁碳納米管陣列(MWNTAs)、C70 peapod(C70@SWCNTs)、石墨烯納米帶摻雜的單壁碳納米管(GNRs@SWCNTs)和碳納米管纖維這幾種材料開展高壓研究,得到如下結果:1.利用高壓偏振拉曼光譜對多壁碳納米管陣列(MWNTAs)進行了研究,針對高壓下MWNTs陣列中的壓制管間相互作用變化、結構相變及鍵連行為等問題進行了分析。發(fā)現(xiàn)多壁碳納米管陣列在常壓條件下D峰和G峰的強度隨偏振角度的改變呈現(xiàn)規(guī)律性的變化,表現(xiàn)出明顯的偏振依賴性:在VV情況下,G峰的拉曼峰強度在0o達到最強,90o達到最小;VH時,45o達到最強,0o/90o達到最小。高壓下,G峰的強度隨著壓力的增加偏振依賴性逐漸減弱,當壓力高于20GPa后,偏振依賴性消失。對22GPa卸壓后的樣品進行表征發(fā)現(xiàn)壓力處理后,陣列中碳納米管的排布更為緊湊,但多壁碳納米管的結構并沒有被破壞。這種偏振性的減弱是由于壓力下增強的管間相互作用導致電子態(tài)離域,降低了材料的偏振依賴性,使其行為趨向體材料所引起的。另一方面,隨著壓力進一步增加,MWNTAs出現(xiàn)的偏振依賴性消失可以歸因于壓力誘導管間相互作用增強導致碳管發(fā)生結構相變,管間或層間形成共價鍵。我們的結果說明偏振拉曼技術能夠在高壓下用于判斷MWNTs陣列中壓力誘導的管間相互作用變化和結構相變的行為。這也解決了長期以來在高壓下研究碳管管間聚合課題上存在的爭議,為碳納米管的壓致轉變研究提供了重要的思路。2.對C70@SWNTs材料開展了原位超高壓研究,獲得了可常壓截獲的新型超硬碳結構。利用透射電鏡、Raman光譜及X射線衍射(XRD)等實驗手段對幾個不同壓力卸壓的C70 peapod樣品分別進行了表征。發(fā)現(xiàn)從最高壓力卸壓后的C70 peapod樣品的XRD具有很多清晰可辨的衍射峰,這些衍射峰不屬于以往報道的任何碳結構。理論模擬進一步預測了一個新的全sp3碳的、具有C2/m對稱性的V carbon結構。所有的碳原子完全以化方式成鍵。計算表明V carbon在0-100GPa的壓力范圍是穩(wěn)定的,它的能量僅略高于金剛石,而低于以往報道的其他碳結構。此外,V carbon具有與金剛石相媲美的的硬度和體彈模量,這很好的解釋了實驗中金剛石砧面上留下的環(huán)形壓痕。V carbon模擬的XRD譜與實驗數(shù)據吻合的很好,說明我們實驗產生的新碳結構指認為V carbon是合理的。同樣重要的是,我們給出了從初始C70 peapod材料向V carbon轉變的物理圖像。該轉變過程中,含奇數(shù)碳環(huán)的C70 peapod作為基本構筑單元起到了重要作用,這為設計合成新碳結構提供了一種新的策略,強調了初始碳源的重要性。該結果對人們構筑碳結構提供了新的思路,將啟發(fā)人們利用、設計含有奇數(shù)碳環(huán)的peapod前驅物作為基本單元去構筑新碳結構。3.對限域于碳納米管內的石墨烯納米帶(GNRs@SWNTs)開展了常壓和高壓結構研究,揭示了溫度對限域納米帶生長的影響及高壓下結構相變行為。研究發(fā)現(xiàn)限域于碳納米管內部的二萘嵌苯分子在高溫退火后能形成限域的納米帶,且納米帶的長度受退火溫度影響。高壓進一步調控主客體之間的相互作用,發(fā)現(xiàn)碳納米管在7GPa左右開始發(fā)生坍塌,內部的納米帶受到破壞,限域的石墨烯納米帶作為“探針”反映碳納米管在高壓下的結構相變。對比研究了高壓下空的和填充的碳納米管的結構塌縮壓力,發(fā)現(xiàn)填充納米帶后的碳納米管塌縮壓力明顯降低,這種現(xiàn)象是由于納米帶分子的非均勻填充碳納米管,帶來了應力分布不均勻所致。理論計算進一步支持我們的實驗結果。該結果有助于我們更深入理解限域空間納米帶的高壓變化行為以及納米帶與碳納米管之間相互作用。4.利用激光加熱在金剛石對頂砧內對碳納米管纖維進行了高溫高壓研究研究。發(fā)現(xiàn)15GPa,2000K條件下,碳納米管纖維轉變形成納米金剛石結構,同時產物中可能還含有少量的“n-diamond”結構。
[Abstract]:Carbon nanotubes as a typical one-dimensional nano materials, including one-dimensional nano pore space of nano confinement system provides an ideal template. The molecular carbon nanotubes within the domain environment will show new structures and new properties different from bulk materials. High pressure can effectively control the distance between atoms, thus affecting their mutual the role and bonding form, resulting in material structure, the nature of the change is the synthesis of new materials, an important means to discover new phenomena. The carbon nanotube and its confinement system and high pressure by means of combining experiments, not only helps to enrich and deepen our understanding of the interaction between the new characteristics of carbon material and its main object they reveal the physical mechanism, high pressure phase transition, and the formation of the carbon materials with novel structure and properties and provides a new way for us. At present on carbon nanotubes and its limit The domain of fullerenes and nanoribbons structure transition mechanism and properties under high pressure change is not clear, using carbon nanotubes as the initial carbon source to build on new carbon structure are rare. In order to solve this problem, the array of multi walled carbon nanotubes (MWNTAs), C70 Peapod (C70@ SWCNTs), graphene nanoribbons doped single-walled carbon nanotubes (GNRs@SWCNTs) and carbon nanotube fibers of high pressure to carry out this research of several materials, the results are as follows: 1. using high polarization Raman spectra of multi walled carbon nanotubes array (MWNTAs) was studied, the interaction between the change in the tube pressing under high pressure in MWNTs array, phase transformation and bonding behavior of structure the problem is analyzed. That change strength of multiwalled carbon nanotube array under atmospheric conditions D and G peaks with the polarization angle of the obvious polarization dependent: in the case of VV, G peak The intensity of Raman peak reached its maximum at 0o, 90o VH, 45o reached the minimum; the strongest, 0o/90o minimum. Under high pressure, the intensity of G peak with the increase of pressure polarization dependence gradually weakened, when the pressure is higher than 20GPa, the polarization dependence of the samples disappeared. After unloading for 22GPa. The results showed that the pressure after treatment, the carbon nanotube array arrangement is more compact, but the structure of multi walled carbon nanotubes and has not been destroyed. This is due to the reduced polarization pressure enhanced tube interaction leads to electronic delocalization, reduces material polarization dependent, the behavior body caused by the materials. On the other hand, with the further increase of pressure, the polarization dependence of MWNTAs disappeared can be attributed to the pressure induced by the interaction between tubes led to the increase of carbon nanotube structure transformation, the formation of a covalent bond between layers of Guan Jianhuo. Our results show that polarization pull Manchester technology under high pressure is used to determine the phase transition pressure induced tube interaction and structural changes in the MWNTs array. This behavior has been solved under high pressure of carbon tubes are polymerization on the subject of controversy,.2. provides a way for C70@SWNTs material to carry out in situ high pressure on carbon nanotubes the pressure induced change research, the new super hard carbon structure can be obtained. The atmospheric interception by transmission electron microscopy, Raman spectroscopy and X ray diffraction (XRD) C70 Peapod sample experiments on several different pressure were characterized. C70 Peapod samples from the highest pressure after the XRD has many the clarity of the diffraction peaks, the diffraction peak of carbon structure does not belong to any previously reported. Further predicted a new SP3 carbon simulation theory, V carbon structure with C2/m symmetry of all. Carbon atoms entirely in way of bonding. The calculation shows that V carbon is stable in the pressure range of 0-100GPa, its energy is only slightly higher than the diamond, but lower than the other carbon structure reported previously. In addition, V carbon has comparable with diamond hardness and bulk modulus, which is a good explanation of the annular indentation.V carbon left on the surface of the diamond anvil experiment simulation of XRD spectra agree well with the experimental data well, indicating that the new structure of our carbon produced by the experiments that think V carbon is reasonable. It is also important that we give the physical image is transformed from the initial C70 to V carbon Peapod materials. The process of change with odd carbon ring C70 Peapod as the basic building unit has played an important role, which provides a new strategy for the design and synthesis of new carbon structure, stressed the importance of the initial carbon source. The result of the formation of the carbon structure for people New ideas will inspire people to use and design of Peapod precursors containing odd carbon ring as the basic unit to build a new structure of graphene nano carbon.3. confined inside carbon nanotubes (GNRs@SWNTs) were studied with normal pressure and high pressure structure, reveals the influence of temperature on the structure phase transition behavior of nano confinement with growth and under high pressure. The study found that confined in carbon nanotubes within two rylene molecules can form nano confinement zone after annealing at high temperature and nano belt length affected by the annealing temperature. The interaction between the main object of high pressure further regulation, the discovery of carbon nanotubes to collapse around 7GPa, internal nano with the destruction of the graphene nano domain as "structural transformation" probe reflects the carbon nanotubes under high pressure. A comparative study of the structure collapse under high pressure and air filled carbon nanotubes reduced pressure, hair Is filled with carbon nanotubes nanoribbons after collapse shrinkage pressure decreased obviously, this phenomenon is due to the non uniformly filled carbon nanotubes with molecular, brings stress distribution is not uniform. The theoretical calculation further supports our experimental results. The results will help us to further understand the pressure change behavior between the nano domain space with the nanoribbons and carbon nanotubes and the interaction of.4. with laser heating in the diamond anvil cell of carbon nanotube fibers was studied under high temperature and high pressure. The discovery of 15GPa, 2000K, carbon nanotube fibers transformed into nano diamond structure, while the product may also contain a small amount of "n-Diamond" structure.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O613.71;TB383.1
【相似文獻】
相關期刊論文 前10條
1 曾令祉,,蔣毅堅,王榮平;鈦酸鋇有序──無序型結構相變機制的新證據[J];光散射學報;1995年Z1期
2 王瑋,李來明,席時權;月桂胺鹽酸鹽結構相變機理的紅外光譜研究[J];應用化學;1992年05期
3 李全;馬琰銘;;高壓下輕元素單質的結構相變[J];化學進展;2011年05期
4 崔愛莉;佐藤治;寇會忠;;鹵離子橋聯(lián)銅(Ⅱ)配合物的結構相變與熱致磁性變化[J];高等學;瘜W學報;2009年09期
5 馬琰銘,馬紅安,潘躍武,崔啟良,劉冰冰,崔田,鄒廣田,劉景,王立軍;Y_2O_3壓致結構相變的研究[J];核技術;2002年10期
6 葉錫生,沙健,焦正寬,彭子飛,張立德;納米 TiO_2 的結構相變[J];浙江大學學報(自然科學版);1998年01期
7 F.W.Voss;魏愚;;CsNaLnCl_6中的結構相變[J];稀土;1982年01期
8 張秀貞,孫占青;LiTaO_3晶體結構相變的等頻喇曼光譜研究[J];哈爾濱師范大學自然科學學報;1994年01期
9 胡林華,戴松元,王孔嘉;溶膠-凝膠法制備的納米TiO_2結構相變及晶體生長動力學[J];物理學報;2003年09期
10 韓杰,鄒廣田,崔田,劉冰冰,潘耀武,高春曉,楊海濱;Sr_2Bi_4Ti_5O_(18)的壓致結構相變[J];高壓物理學報;1998年03期
相關會議論文 前10條
1 王哲明;;甲酸鹽的變溫結構和結構相變[A];中國化學會第29屆學術年會摘要集——第13分會:晶體工程[C];2014年
2 陳艷萍;龍毅;萬發(fā)榮;;用商用Gd制備的Gd_5Si_(1.85)Ge_(2.15)的結構變化研究[A];第四屆中國功能材料及其應用學術會議論文集[C];2001年
3 周赫田;劉麗玲;張樹霖;周學秋;商玉生;王彥云;姚振益;;高壓下BaF_2的喇曼光譜和壓力相變[A];第二屆全國光散射學術會議論文集(上)[C];1983年
4 陳鎮(zhèn)平;薛運才;薛人中;李濤;代海洋;陳靖;;Zn/Fe摻雜RBa_2Cu_(3-x)M_xO_(7-δ)超導體系結構相變及局域電子結構特征的正電子研究[A];第十一屆全國正電子湮沒譜學會議論文集[C];2012年
5 趙智;左健;;PbWO_4微晶高壓結構相變的Raman光譜研究[A];第十七屆全國光散射學術會議摘要文集[C];2013年
6 于華民;郭星原;劉瑩;許大鵬;;微區(qū)Raman光譜在TiO_2高壓結構相變研究中的應用[A];第十四屆全國光散射學術會議論文摘要集[C];2007年
7 李領偉;曹世勛;曹桂新;敬超;張金倉;;氧摻雜Y_(0.8)Ca_(0.2)Ba_2Cu_3O_y體系中結構相變與電荷轉移的正電子實驗研究[A];第九屆全國正電子譜學會議論文集[C];2005年
8 李俊;周顯明;梁萬珍;經福謙;;LiTaO_3晶體高壓結構相變的理論研究[A];第四屆全國爆炸力學實驗技術學術會議論文集[C];2006年
9 王哲明;;稀土-甲酸-銨鹽:手性、磁性、結構相變和介電異常[A];中國化學會第29屆學術年會摘要集——第06分會:稀土材料化學及應用[C];2014年
10 侯碧輝;郭常新;李碧琳;葵劍云;;以Mn~(2+)為標記的ESR研究ZnS的結構相變[A];第五屆全國波譜學學術會議論文摘要集[C];1988年
相關博士學位論文 前10條
1 張宇航;Ag_2Te與As_2Te_3的高壓行為研究[D];吉林大學;2016年
2 劉廣韜;高壓下典型二元化合物結構和相變的實驗和理論研究[D];吉林大學;2015年
3 郭永亮;新型釷基核材料在高壓下的晶體結構相變及穩(wěn)定性研究[D];華東師范大學;2017年
4 楊西貴;碳納米管及其限域體系的高壓結構相變和超硬相研究[D];吉林大學;2017年
5 葉翔;納米體系結構相變及物性的分子動力學模擬[D];復旦大學;2007年
6 程本源;二氧化釩準一維微/納米材料的合成及高壓結構相變研究[D];吉林大學;2015年
7 路雙臣;典型碳納米材料的高壓結構相變研究[D];吉林大學;2013年
8 楊雪;典型含氧八面體金屬氧化物的高壓結構相變研究[D];吉林大學;2014年
9 張莉;MgO-FeO和Fe-Ni-S體系的高溫高壓研究及其地球物理意義[D];西南交通大學;2006年
10 周丹;SnTe高壓結構相變與物性研究[D];吉林大學;2014年
相關碩士學位論文 前10條
1 韋樹波;鹵化銫的高壓結構相變和物性研究[D];吉林大學;2016年
2 許可;高壓下NbSe_2及NaNbO_3/NaTaO_3的結構相變研究[D];吉林大學;2016年
3 趙文蘋;含磺酸基陰離子化合物的合成、結構及介電性質研究[D];東南大學;2016年
4 曹平;電場對高壓下受限水結構相變影響的研究[D];南京師范大學;2016年
5 李全一;二氧化碳的高壓結構相變理論研究[D];遼寧大學;2013年
6 劉海平;高壓下釩的結構相變的第一性原理計算研究[D];揚州大學;2008年
7 黃偉軍;鐵的高壓電學及結構相變研究[D];吉林大學;2006年
8 王軍國;石英界面處液態(tài)水的沖擊結構相變[D];西南交通大學;2012年
9 張興;結構相變路徑選擇的交替迭代求解算法[D];復旦大學;2011年
10 李印威;高壓下氫化鈣和氧化錫結構相變的第一性原理研究[D];吉林大學;2008年
本文編號:1722336
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1722336.html