基于定子磁鏈控制的IPMSM驅(qū)動系統(tǒng)研究
本文關(guān)鍵詞:基于定子磁鏈控制的IPMSM驅(qū)動系統(tǒng)研究 出處:《浙江大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 凸極式永磁同步電機(jī) 直接轉(zhuǎn)矩控制 定子磁鏈控制 共模電壓 死區(qū) 負(fù)載功率因數(shù) 三相四開關(guān) 低頻
【摘要】:永磁同步電機(jī)由于具有高功率密度、高功率因數(shù)、結(jié)構(gòu)簡單、體積小、可靠性高、便于維護(hù)等優(yōu)點,被廣泛應(yīng)用在風(fēng)力發(fā)電、新能源汽車、數(shù)控機(jī)床以及航空航天等領(lǐng)域。永磁電機(jī)作為相關(guān)應(yīng)用領(lǐng)域的執(zhí)行元件,其驅(qū)動系統(tǒng)的好壞,直接影響著整套設(shè)備的整體性能。因此,本文選擇永磁同步電機(jī)驅(qū)動系統(tǒng)作為研究的重點。鑒于在永磁同步電機(jī)中凸極機(jī)比隱極機(jī)具有更高的轉(zhuǎn)矩電流比、更寬的調(diào)速范圍和更強(qiáng)的弱磁控制能力,且現(xiàn)有文獻(xiàn)對隱極式永磁同步電機(jī)控制策略的研究也比較詳細(xì),而凸極機(jī)由于其dq軸電感值不相等,導(dǎo)致有關(guān)控制策略的開發(fā)難度相對比較大,因此本文以凸極式永磁同步電機(jī)(Interior Permanent Magnet Synchronous Motor,IPMSM)為主要研究對象,嘗試?yán)眯绿岢龅亩ㄗ哟沛溈刂品桨竵慝@得較高的轉(zhuǎn)矩響應(yīng)速度和較低的轉(zhuǎn)矩脈動輸出。在定子磁鏈控制方案中,由于直接使用空間電壓矢量調(diào)制算法(Space Vector Pulse Width Modulation,SVPWM)來合成參考電壓矢量,使得驅(qū)動系統(tǒng)附帶很高的共模電壓輸出。為此,本文通過使用修正PWM調(diào)制算法來減小驅(qū)動系統(tǒng)輸出的共模電壓,避免電機(jī)轉(zhuǎn)軸軸承的過早損壞,進(jìn)而提高IPMSM的可靠性。另外,鑒于IPMSM驅(qū)動系統(tǒng)中功率開關(guān)管是一個容易發(fā)生故障的薄弱環(huán)節(jié),為使IPMSM驅(qū)動系統(tǒng)具有一定的容錯運行能力,針對逆變器的單相橋臂故障,本文選擇三相四開關(guān)逆變器作為驅(qū)動器故障后的容錯運行拓?fù)?并將定子磁鏈控制引入到IPMSM驅(qū)動系統(tǒng)的容錯運行控制當(dāng)中。首先,推導(dǎo)了基于凸極式永磁同步電機(jī)的定子磁鏈關(guān)于時間的微分方程,分別建立了凸極機(jī)在靜止坐標(biāo)系下和旋轉(zhuǎn)坐標(biāo)下以定子磁鏈為狀態(tài)變量的狀態(tài)空間模型。提出了一種基于定子磁鏈控制的直接轉(zhuǎn)矩控制方案,并分別在旋轉(zhuǎn)坐標(biāo)系下和靜止坐標(biāo)系下實施。在該方案中,首先分析了定轉(zhuǎn)子磁鏈?zhǔn)噶恐g的位置關(guān)系,并將系統(tǒng)的速度外環(huán)輸出作為轉(zhuǎn)矩角的期望值,進(jìn)而計算出下一時刻定子磁鏈?zhǔn)噶康钠谕?其次,構(gòu)建無差拍全階狀態(tài)觀測器,實現(xiàn)對定子磁鏈的閉環(huán)觀測;通過設(shè)計狀態(tài)反饋增益矩陣將系統(tǒng)的閉環(huán)極點放置在z平面的正實軸上,并預(yù)留一個參數(shù)來改變閉環(huán)系統(tǒng)的極點位置,調(diào)節(jié)系統(tǒng)的性能;最后,根據(jù)系統(tǒng)的定子磁鏈誤差矢量和所選擇的狀態(tài)反饋增益矩陣來計算參考電壓矢量,并將其送入SVPWM模塊中。該方案與傳統(tǒng)的PI+SVMDTC控制方案相比,移去了轉(zhuǎn)矩環(huán),只通過定子磁鏈環(huán)來控制系統(tǒng)的轉(zhuǎn)矩輸出,因而具有更快的轉(zhuǎn)矩響應(yīng)速度;同時直接以電機(jī)內(nèi)部的定子磁鏈為控制目標(biāo),系統(tǒng)輸出的諧波含量更低。實驗結(jié)果驗證了所提控制方案的有效性和優(yōu)越性。其次,為避免定子磁鏈控制方案中因采用SVPWM調(diào)制方式所產(chǎn)生的共模電壓對電機(jī)轉(zhuǎn)軸軸承造成的電腐蝕,本文利用AZPSWM1調(diào)制算法和NSPWM調(diào)制算法來降低驅(qū)動器輸出的共模電壓幅值。鑒于在逆變器正常運行過程中死區(qū)時間是必不可少的,本文分別分析了死區(qū)條件下,采用AZSPWM1和NSPWM調(diào)制算法的逆變器的共模電壓輸出情況,分析了共模電壓抑制算法失效時所需滿足的負(fù)載功率因數(shù)條件和參考電壓矢量所處的扇區(qū)位置。隨后,本文通過限制有關(guān)電壓矢量的最小作用時間來消除驅(qū)動器輸出的共模電壓尖峰,并分析了此最小作用時間對AZSPWM1和NSPWM適用調(diào)制范圍的影響。最后,將修正后的AZSPWM1和NSPWM相結(jié)合組成混合調(diào)制模式,實現(xiàn)了在全功率因數(shù)條件下寬調(diào)制范圍內(nèi)對共模電壓的有效抑制;并將此混合調(diào)制算法應(yīng)用在定子磁鏈控制系統(tǒng)中。實驗結(jié)果驗證了本文所提出的共模電壓抑制算法的有效性。最后,為使驅(qū)動器具有一定的容錯運行能力,針對驅(qū)動器的單相橋臂故障,本文選擇三相四開關(guān)逆變器作為其故障后的容錯運行拓?fù)洹J紫?分別介紹了針對不同故障相的三相四開關(guān)逆變器的基本特點,設(shè)計了相應(yīng)的無扇區(qū)SVPWM調(diào)制算法。其次,針對逆變器A相故障,分析了直流母線中性點電壓基波分量與定子電流β軸分量之間的關(guān)系,基于此關(guān)系設(shè)計了一個簡單算法來替代二階低通濾波器從直流母線中性點電壓中提取直流偏置,并通過PI控制器構(gòu)成閉環(huán)回路實現(xiàn)對直流母線中性點電壓中直流偏置的有效抑制。隨后,分別針對B相故障和C相故障,修正了上述中性點電壓控制方案。再次,針對三相四開關(guān)逆變器低頻段線性調(diào)制范圍比較小的問題,本文在分析了逆變器最大線性調(diào)制度與負(fù)載功率因數(shù)之間的關(guān)系后,提出了一種在不改變直流母線現(xiàn)有條件的前提下增大逆變器低頻段線性調(diào)制范圍的控制方案,并通過實驗驗證了該方案的有效性。最后,將定子磁鏈控制方案引入到基于三相四開關(guān)逆變器的IPMSM驅(qū)動系統(tǒng)中,并進(jìn)行了實驗驗證。
[Abstract]:Permanent magnet synchronous motor has high power density, high power factor, simple structure, small volume, high reliability, convenient maintenance and other advantages, is widely used in wind power, new energy vehicles, CNC machine tools and aerospace fields. Permanent magnet motor related applications as actuators, the drive system is good or bad, directly affect the overall performance of the whole equipment. Therefore, the permanent magnet synchronous motor drive system as the focus of the study. In view of the permanent magnet synchronous motor of convex pole machine than salient pole machine with torque current higher than that in a wide speed range and stronger weak magnetic control ability, and the research of synchronous motor control strategy the existing literature on the non salient pole permanent magnet is detailed, and the salient pole machine because of its DQ axis inductance is not equal to the relevant control strategy, development difficulty is relatively large, so this paper takes the salient permanent magnet with Step motor (Interior Permanent Magnet Synchronous Motor, IPMSM) as the main research object, try to obtain a higher torque response speed and low torque ripple of output by using the stator flux control scheme is proposed. The stator flux control scheme, due to the direct use of space vector modulation algorithm (Space Vector Pulse Width Modulation, SVPWM) to synthesize the reference voltage vector, the drive system with high common mode voltage output. Therefore, this paper through the use of modified PWM algorithm to reduce common mode voltage output of the drive system, avoid the damage to the motor shaft bearing, thus improving the reliability of IPMSM. In addition, in view of the IPMSM in the drive system of power switch is an easy failure of the weak links, in order to make the IPMSM drive system has high reliability, for the single-phase bridge arm fault inverter, this paper Select the three-phase four switch inverter topology as fault tolerant operation drive failure after, and the stator flux control into IPMSM control drive system of the fault tolerant operation. First, differential equations of the stator flux of salient pole permanent magnet synchronous motor on time is deduced based on, we established the salient pole machine in the stationary coordinate system and coordinate with stator flux as state space model of the state variables. This paper presents a direct torque control scheme based on stator flux control, and the implementation in the rotating coordinates and stationary coordinates. In this scheme, firstly analyzes the relationship between the position of the rotor flux vector, and the speed of the system the outer loop output torque angle as the expected value, and then calculate the next time the stator flux vector expected value; secondly, construct the deadbeat full order state observer, the stator flux Close observation; through the design of state feedback gain matrix of the closed-loop poles are placed in the z plane is on the real axis, and a pole position of reserve parameters to change the closed-loop system performance regulation system; finally, according to the stator flux error vector system and the selection of the state feedback gain matrix to calculate the reference voltage vector, and sent to the SVPWM module in PI+SVMDTC. Compared with the traditional control scheme, removed the torque loop, the output torque only through the stator flux loop control system, which has faster response speed and torque; direct to stator flux inside the motor as the control target, lower harmonic content of output experiments. The results verify the validity and superiority of the proposed control scheme. Secondly, in order to avoid the stator flux control scheme by using SVPWM modulation generated by the common mode voltage of motor Electric corrosion caused by the shaft bearing, this paper uses AZPSWM1 modulation algorithm and NSPWM algorithm to reduce the common mode voltage amplitude driver output. In view of the dead time of inverter in the normal operation of the process is essential, this paper analyzes the dead time conditions, the output common mode voltage inverter AZSPWM1 and NSPWM modulation algorithm, analyzes the common mode voltage inhibition of sector position, meet the needs of the algorithm failure load power factor condition and the reference voltage vector. Then, through the limitation of the minimum working time of voltage vector to eliminate the common mode voltage spike driver output, and analyzed the influence of the minimum duration on the applicable range of AZSPWM1 modulation and NSPWM. Finally, the correction after the AZSPWM1 and NSPWM combination of hybrid modulation mode, the total power factor under the condition of wide range of modulation Effective suppression of common mode voltage; and the hybrid modulation algorithm is applied to the stator flux control system. The experimental results verify the effectiveness of the proposed common mode voltage suppression algorithm. Finally, the driver has high reliability, for the single-phase bridge arm failure drive, this paper chose the three-phase four switch inverter for fault tolerance run the topology failure. Firstly, the paper introduces the basic characteristics of different fault phase of the three-phase four switch inverter, designed without sector SVPWM modulation algorithm accordingly. Secondly, according to the A phase inverter fault, analyzes the relationship between the DC bus voltage of the neutral point and fundamental component of stator current beta axis component, based on this the relationship between the design of a simple algorithm to replace the two order low-pass filter to extract the DC bias from the DC bus voltage of the neutral point, and through the PI controller to form a closed loop Loop to achieve effective suppression of the DC bias voltage of the neutral point of the DC bus. Then, according to phase B fault and C fault, fixed above the neutral point voltage control scheme. Thirdly, aiming at the three-phase four switch inverter frequency linear modulation range is relatively small, this paper analyzes the relationship between the maximum linear modulation inverter the system and the load power factor, put forward a kind of without changing the existing conditions of DC bus under the premise of increasing frequency inverter linear modulation range control scheme, and the effectiveness of the scheme is verified by experiments. Finally, the stator flux control scheme is introduced based on the three-phase four switch inverter IPMSM drive system. And experiments were carried out.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾軒;劉超;盛鑫軍;朱向陽;;驅(qū)控一體伺服系統(tǒng)的FPGA模塊設(shè)計與應(yīng)用[J];機(jī)電一體化;2016年04期
2 周昌宇;成燕;王斌;徐萬萬;;永磁同步電動機(jī)位置伺服反推優(yōu)化控制[J];計算機(jī)仿真;2016年04期
3 李勇;王亮;趙博;王騫;徐永向;;航天用直驅(qū)式永磁伺服電機(jī)的輕型化技術(shù)[J];電機(jī)與控制學(xué)報;2015年08期
4 魯家棟;劉景林;衛(wèi)麗超;;永磁同步電機(jī)轉(zhuǎn)子初始位置檢測方法[J];電工技術(shù)學(xué)報;2015年07期
5 徐海奇;何鳳有;曹曉冬;周選選;王從剛;;三相四開關(guān)逆變器供電永磁同步電機(jī)預(yù)測轉(zhuǎn)矩控制[J];電機(jī)與控制應(yīng)用;2015年02期
6 黃科元;周李澤;周滔滔;黃守道;;一種增強(qiáng)可靠性的永磁同步電機(jī)初始角檢測[J];電工技術(shù)學(xué)報;2015年01期
7 董劍寧;黃允凱;金龍;林鶴云;;高速永磁電機(jī)設(shè)計與分析技術(shù)綜述[J];中國電機(jī)工程學(xué)報;2014年27期
8 劉勇超;葛興來;;三種三相四開關(guān)逆變器SVPWM策略內(nèi)在聯(lián)系[J];電源學(xué)報;2014年05期
9 周娟;魏琛;楊宇;陳映;張彥兵;;逆變器簡化PWM算法及抑制共模電壓策略[J];電工技術(shù)學(xué)報;2014年08期
10 韋徵;陳新;陳杰;李臣松;龔春英;;三相四橋臂PWM整流器的研究[J];電工技術(shù)學(xué)報;2014年08期
,本文編號:1362361
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1362361.html