燕麥葡聚糖抗炎與降脂功能的評估及其分子機(jī)理研究
本文關(guān)鍵詞:燕麥葡聚糖抗炎與降脂功能的評估及其分子機(jī)理研究 出處:《中南林業(yè)科技大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 燕麥葡聚糖 潰瘍性結(jié)腸炎 高脂血癥 炎癥因子 脂肪代謝因子
【摘要】:燕麥(Avenasativa)是禾本科燕麥屬草本植物,一年生,是一種古老的糧食作物,已經(jīng)被人類種植了近兩千年之久,一般被直接作為食物或者作為飼料給動物使用。燕麥分為皮燕麥和裸燕麥兩種,裸燕麥在我國種植歷史悠久,《本草綱目》中稱之為雀麥、野麥子。燕麥性味甘平。能益脾養(yǎng)心、斂汗。有較高的營養(yǎng)價值。古代醫(yī)書《救荒本草》中提到,燕麥可用于體虛自汗、盜汗或肺結(jié)核病人。煎湯服,或“春去皮作面蒸食及作餅食”。燕麥能促進(jìn)腸胃蠕動,利于排便,熱量低,具有升糖指數(shù)低,降脂降糖的功效。早期人們對燕麥的研究較少,認(rèn)為燕麥具有增加飽腹感和降低營養(yǎng)物質(zhì)吸收的能力,近年來,燕麥有益于健康的生理功能,使得燕麥成為了食療與健康新的研究熱點,研究發(fā)現(xiàn),燕麥具有非常廣泛的生理功能,包括降低膽固醇的作用,降低血糖水平的能力,調(diào)節(jié)免疫,降低腸癌風(fēng)險等。研究還發(fā)現(xiàn),燕麥的這些營養(yǎng)作用主要來源于燕麥麩皮中的一種營養(yǎng)組分——燕麥葡聚糖,燕麥葡聚糖主要存在于燕麥胚乳和糊粉層細(xì)胞壁中,主要是由許多單糖按照β-(1,3)和β-(1,4)糖苷鍵連接形成一種不可消化的β-D-葡聚糖,而這一特殊結(jié)構(gòu)也使得燕麥葡聚糖具有特殊的有益健康生理功能。1997年美國食物與藥物監(jiān)督管理局(FDA)建議每天食用3克以上含燕麥葡聚糖的食品,并允許在食品上明確標(biāo)識。1.燕麥葡聚糖對DSS誘導(dǎo)小鼠潰瘍性結(jié)腸炎的抑制作用小鼠自由飲用3%硫酸葡聚糖鈉(DSS)連續(xù)7天構(gòu)建小鼠潰瘍性腸炎模型,在實驗開始前3天于保護(hù)組灌胃500mg/kg.bw和1000mg/kg.bw燕麥葡聚糖直至實驗結(jié)束。結(jié)果發(fā)現(xiàn)DSS損傷組小鼠逐漸出現(xiàn)活動力減弱、厭食、腹瀉、毛色凌亂等情況。并出現(xiàn)體重下降、腹瀉、便血等癥狀,燕麥葡聚糖保護(hù)組DAI評分明顯降低(P0.01)處死小鼠后發(fā)現(xiàn),DSS損傷組小鼠腸道長度顯著低于正常組小鼠,腸道腫脹,變粗,腸腔中未見成型糞便。而正常小鼠腸道長而緊致,腸腔中可見顆粒狀成型糞便。燕麥葡聚糖保護(hù)組小鼠的平均腸道長度介于正常組與損傷組之間,腸炎小鼠脾臟體積和重量均大于正常組,而葡聚糖保護(hù)組小鼠脾臟有所改善。蘇木素伊紅(HE)染色結(jié)果發(fā)現(xiàn),正常組小鼠腸道結(jié)構(gòu)完整,腸道壁厚度均勻,腸絨毛及隱窩結(jié)構(gòu)清晰,而DSS損傷組小鼠腸道橫切面則顯示出強(qiáng)烈的炎癥反應(yīng),如腸道壁增厚,結(jié)腸上皮粘膜糜爛、隱窩結(jié)構(gòu)被破壞、粘膜下水腫、淋巴及中性粒細(xì)胞浸潤、腸道內(nèi)壁不規(guī)則增生等。燕麥葡聚糖保護(hù)組小鼠腸道鏡下觀測效果優(yōu)于損傷組。小鼠腸道研磨后檢測髓過氧化物酶(MPO),丙二醛(MDA)以及一氧化氮(NO)的量,損傷組小鼠都顯著高于正常組,葡聚糖保護(hù)組的這些指數(shù)顯著低于損傷組。提取腸道RNA和蛋白質(zhì)分別進(jìn)行熒光定量PCR和Western blot實驗,結(jié)果損傷組炎癥因子腫瘤壞死因子α(TNF-α),白細(xì)胞介素1和6(IL-1β、IL-6)以及誘導(dǎo)型一氧化氮合酶(iNOS)的mRNA以及蛋白表達(dá)量顯著上調(diào),保護(hù)組炎癥因子表達(dá)量顯著低于損傷組。且基本呈現(xiàn)濃度依賴性。從免疫組織化學(xué)(IHC)圖中可以看出炎癥因子表達(dá)量較高,且在腸道中大量聚集,但保護(hù)組的表達(dá)量較低。2.燕麥葡聚糖抑制LPS誘導(dǎo)巨噬細(xì)胞的炎癥及炎癥因子表達(dá)巨噬細(xì)胞RAW264.7在脂多糖(LPS)刺激下的可以誘導(dǎo)為炎癥因子體外模型,通過使用燕麥葡聚糖觀察其對炎癥狀態(tài)的抑制效果。研究發(fā)現(xiàn),20 μg/mL和40 μg/mL的燕麥葡聚糖對巨噬細(xì)胞的活力無顯著影響,因而可以適用于該模型的研究。LPS組對比對照組,促炎因子TNFα、IL-6、IL-1β、iNOS和IFN-γ的mRNA表達(dá)量和蛋白表達(dá)明顯上升,對比LPS組,燕麥葡聚糖組能夠降低這些mRNA和蛋白質(zhì)表達(dá),且結(jié)果呈現(xiàn)出一定量效關(guān)系。3.燕麥葡聚糖預(yù)防小鼠高脂血癥的發(fā)生及其分子機(jī)制通過給小鼠飼喂高脂飼料,建立了高脂血癥小鼠模型,并通過灌胃的方式給小鼠飼喂500mg/kg.bw和1000mg/kg.bw燕麥葡聚糖直至實驗結(jié)束。高脂組小鼠體重從第一周開始增加,其后維持穩(wěn)定,而葡聚糖保護(hù)組小鼠體重則低于高脂組小鼠,且結(jié)果呈濃度依賴性。解剖小鼠后取器官分析,結(jié)果發(fā)現(xiàn),正常組小鼠肝臟呈暗紅色,體積較小,而高脂組小鼠肝臟重量和體積都較大,色澤發(fā)白或者發(fā)黃,表面有厚重的油膩感和顆粒感。低濃度葡聚糖保護(hù)組肝臟顏色較高脂組顏色深,且白色顆粒狀較少,體積較小。高濃度葡聚糖保護(hù)組小鼠肝臟顏色接近正常組,重量顯著小于高脂組和低濃度葡聚糖保護(hù)組。高脂組小鼠脾臟體積和重量顯著高于正常組,而保護(hù)組小鼠脾臟相對較小。高脂組的總甘油三酯、總膽固醇、低密度脂蛋白膽固醇顯著高于正常組,而葡聚糖保護(hù)組的具有顯著降低脂肪與膽固醇、同時還包含有低密度脂蛋白膽固醇的作用。然而,高脂組的高密度脂蛋白膽固醇低于對照組,燕麥葡聚糖在一定程度上具有增加高密度脂蛋白膽固醇的作用,但并未具有顯著性差異。肝臟HE染色,結(jié)果發(fā)現(xiàn),正常組小鼠肝細(xì)胞排列比較整齊,未見脂肪空泡。高脂組小鼠肝細(xì)胞排列松散,肝細(xì)胞腫大,胞質(zhì)內(nèi)可見許多大小不一的脂肪空泡,低保護(hù)燕麥葡聚糖組小鼠脂肪有少量脂肪泡,高濃度保護(hù)組細(xì)胞排列緊密,基本與正常組無區(qū)別。脂肪墊HE染色結(jié)果發(fā)現(xiàn),正常組小鼠脂肪細(xì)胞直徑較小,排列緊密,而高脂組小鼠脂肪細(xì)胞直徑顯著大于正常組,直徑約為正常組小鼠脂肪細(xì)胞的兩倍。燕麥葡聚糖保護(hù)組小鼠脂肪細(xì)胞直徑顯著低于高脂組。熒光定量PCR結(jié)果發(fā)現(xiàn),脂肪代謝相關(guān)基因過PPARα在高脂組表達(dá)量顯著低于正常對照組,而燕麥葡聚糖組的PPARα基因表達(dá)量顯著提高,大大高于高脂組,提示燕麥葡聚糖可以通過刺激能量的消耗,減少能量物質(zhì)堆積于肝臟。PPARy、脂肪酸合成酶(Fatty acid synthesis,FAS)和膽固醇調(diào)節(jié)元件結(jié)合蛋白(Sterol-regulatory element binding protein 1C,SREBP-1C)都與脂肪和膽固醇的合成有關(guān),高脂組小鼠肝臟中的PPARγ、FAS和SREBP-1C的mRNA表達(dá)量都顯著增加,而葡聚糖保護(hù)組小鼠的這三個基因都有所下降,提示燕麥葡聚糖能減少脂肪和膽固醇合成,降低其沉積于體內(nèi)的量,從而達(dá)到降脂的目的。同時高脂組小鼠肝臟炎癥因子TNF-α、IL-6和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthesis,iNOS)都有所上調(diào),兩個濃度的燕麥葡聚糖都能顯著的降低炎癥因子的表達(dá)量。減少高脂血癥伴隨的炎癥發(fā)生。
[Abstract]:Oats (Avenasativa), a grass herb belonging to Gramineae, is an ancient food crop, which has been planted for nearly two thousand years in the world. It is usually used as food or feed for animals. Oat is divided into two kinds of oat and oat, oat cultivated in China has a long history, "Compendium of Materia Medica" called Brome, wild wheat. Sexual flavour Ganping oats. It can nourish the spleen and raise the sweat. It has high nutritional value. Mentioned in ancient books "for materia medica", can be used for oat body empty spontaneous, night sweats or pulmonary tuberculosis patients. Jiantang clothes, or "spring surface and peeled steamed cakes". Oats can promote intestinal peristalsis, which is beneficial to defecation, low heat, low rising sugar index and reducing fat and reducing sugar. Study on the early people of oat that has less oats increase satiety and reduce the ability of nutrient absorption in recent years, oat is beneficial to healthy physiological function, which become the diet and health of oat new research focus, the study found that the physiological function of oat is very extensive, including cholesterol lowering effect ability to reduce blood glucose levels, regulating immunity, reduce the risk of colorectal cancer. The study also found that the nutritional effects of oat mainly derived from oat bran in a nutrient component of oat glucan, oat glucan mainly exists in oat endosperm and aleurone cell wall, is mainly composed of many monosaccharides in accordance with beta (1,3) and beta (1,4) glycosidic bond can not form a digestion of beta -D- dextran, and this special structure makes the oat glucan has beneficial physiological function of special health. In 1997, the United States Food and Drug Administration (FDA) recommended to eat more than 3 grams of oat glucan a day and allow a clear label on the food. 1. oat glucan on DSS induced ulcerative colitis in mice the mice drinking 3% dextran sulfate sodium (DSS) for 7 consecutive days of ulcerative colitis mice, 3 days before the experiments began in 500mg/kg.bw and 1000mg/kg.bw protection group fed oat glucan until the end of the experiment. The results showed that the mice in the DSS injury group gradually weakened, anorexia, diarrhea, and hair color disorder and so on. And the emergence of weight loss, diarrhea, hematochezia and other symptoms, oat glucan protection group DAI scores were significantly decreased (P0.01) mice were killed after the discovery, the DSS injury group mice intestinal length was significantly lower than normal group mice, intestinal swelling, thickening of the intestinal cavity, not forming stool. In the normal mice, the intestinal tract was long and compact, and the granule shaped feces were found in the intestinal cavity. The average length of intestinal tract in oats dextran protection group was between normal group and injury group. The spleen volume and weight of enteritis mice were all larger than those of normal group, but the spleen of dextran protection group improved. Hematoxylin and eosin (HE) staining results showed that normal mice intestinal structural integrity, intestinal wall thickness, villus and crypt structure is clear, and the injury of DSS mice intestinal cross section showed a strong inflammatory response, such as bowel wall thickening, colonic mucosal erosion, the crypt structure was destroyed, submucosal edema, lymphocytes and neutrophil infiltration, intestinal wall irregular hyperplasia. The observation effect of oat dextran protective group under intestinal microscope was better than that of injury group. After murine intestinal lapping, myeloperoxidase (MPO), malondialdehyde (MDA) and nitric oxide (NO) levels were detected. The injury group mice were significantly higher than those of the normal group, and those indexes of dextran protection group were significantly lower than those of the injury group. The extraction of intestinal RNA and protein were PCR and Western fluorescence quantitative blot test results in injury group inflammatory cytokines tumor necrosis factor alpha (TNF- alpha), interleukin 1 and 6 (IL-1 P, IL-6) and inducible nitric oxide synthase (iNOS) and mRNA protein expression was significantly up-regulated, protection group inflammation gene expression was significantly lower than the injury group. And it is basically dependent on concentration. It was found that the expression of inflammatory factors was higher and accumulated in the intestinal tract, but the expression of the protective group was low in IHC. 2., oatmeal dextran inhibited LPS induced inflammatory and inflammatory cytokines expression in macrophages. The macrophage RAW264.7 could be induced by lipopolysaccharide (LPS) as an inflammatory factor in vitro, and its inhibitory effect on inflammation was observed by oatmeal dextran. It was found that oat dextran of 20 g/mL and 40 mu g/mL had no significant effect on the viability of macrophages, so it could be applied to the study of the model. Compared with control group, mRNA expression and protein expression of proinflammatory cytokines TNF, IL-6, IL-1 beta, iNOS and IFN- gamma increased significantly in group LPS, compared with LPS group, oatmeal dextran group could reduce these mRNA and protein expression, and the results showed a dose-dependent relationship. 3. oatmeal dextran prevents the occurrence and molecular mechanism of hyperlipidemia in mice. By feeding high fat diet to mice, a mouse model of hyperlipidemia was established, and 500mg/kg.bw and 1000mg/kg.bw oat dextran were fed to mice through the way of gavage until the end of the experiment. The body weight of the high fat group increased from the first week, then maintained stable, while the body weight of the dextran protection group was lower than that of the high-fat group, and the result was concentration dependent. After dissection of the mice, the organs were analyzed. It was found that the liver of the normal group was dark red and small, while the liver weight and volume of the high-fat group were bigger, the color was whitish or yellowed, and the surface had thick greasy and granular feelings. In the low concentration dextran protection group, the color of the liver with higher color was deep, and the white granules were less and the volume was smaller. The liver color of the high concentration dextran protective group was close to the normal group, and the weight was significantly lower than that of the high fat group and the low concentration dextran protective group. The volume and weight of spleen in the high fat group were significantly higher than that in the normal group, while the spleen in the protective group was relatively small. Total triglyceride and total bilirubin in high fat group
【學(xué)位授予單位】:中南林業(yè)科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TS210.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 王慶福;;富有營養(yǎng)和保健價值的燕麥?zhǔn)称穂J];商業(yè)科技;1993年02期
2 董銀卯;何聰芬;;營養(yǎng)、天然美容新資源——燕麥[J];中國化妝品(行業(yè));2008年02期
3 陳志奇;涼山燕麥[J];四川糧油科技;1999年03期
4 黃艾祥,楊振生,董文明;營養(yǎng)燕麥乳的研制[J];食品科技;2001年02期
5 傅翠真;燕麥的營養(yǎng)特性及配餐[J];中國食物與營養(yǎng);2002年05期
6 石永峰;燕麥的營養(yǎng)價值及其食品加工[J];武漢糧食工業(yè)學(xué)院學(xué)報;1992年04期
7 王娜;張民;於洪建;王昌祿;;燕麥膠的提取分離及其抗氧化活性研究[J];食品研究與開發(fā);2006年03期
8 李芳;劉剛;劉英;陳季旺;田向東;葉芳;袁學(xué)軍;;燕麥的綜合開發(fā)與利用[J];武漢工業(yè)學(xué)院學(xué)報;2007年01期
9 高昆,孫洪斌,肖夢蘭,劉洪元;莜麥?zhǔn)称返难兄坪烷_發(fā)[J];糧油食品科技;1990年03期
相關(guān)會議論文 前3條
1 董桂珍;;燕麥?zhǔn)称返难芯亢烷_發(fā)[A];91'全國包裝和食品機(jī)械與食品加工學(xué)術(shù)討論會/包裝和食品機(jī)械專業(yè)學(xué)會第二屆學(xué)術(shù)年會論文集(第一冊)[C];1991年
2 孫曉萍;張福維;;遼寧黑山地區(qū)燕麥脂肪酸成分的提取與分析[A];中國化學(xué)會第十三屆有機(jī)分析與生物分析學(xué)術(shù)會議論文集[C];2005年
3 郭成亮;于順;;小麥不孕病菌(Pyrenophora semeniperda)研究進(jìn)展[A];中國第六屆海峽兩岸菌物學(xué)學(xué)術(shù)研討會論文集[C];2004年
相關(guān)重要報紙文章 前3條
1 ;燕麥的營養(yǎng)特性[N];中國畜牧獸醫(yī)報;2008年
2 張淑媛;燕麥及燕麥纖維[N];糧油市場報;2001年
3 河北省農(nóng)林科學(xué)院張家口分院 楊才;燕麥與莜麥的關(guān)系與區(qū)別[N];中國食品質(zhì)量報;2010年
相關(guān)博士學(xué)位論文 前2條
1 劉博;燕麥葡聚糖抗炎與降脂功能的評估及其分子機(jī)理研究[D];中南林業(yè)科技大學(xué);2017年
2 彭遠(yuǎn)英;燕麥屬物種系統(tǒng)發(fā)育與分子進(jìn)化研究[D];四川農(nóng)業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張青;燕麥啤灑的生產(chǎn)工藝研究[D];西北農(nóng)林科技大學(xué);2015年
2 張文婷;燕麥片加工過程中油脂的變化及超臨界提取技術(shù)研究[D];陜西師范大學(xué);2015年
3 任祥;半干旱區(qū)集雨壟的徑流效率和壟溝集雨對燕麥生產(chǎn)效應(yīng)的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
4 徐麗;燕麥酥餅加工技術(shù)及其保質(zhì)期的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
5 鞠淼;鹽及鹽堿混合條件對燕麥脅迫作用的比較[D];東北師范大學(xué);2008年
6 陳汝群;燕麥系列食品生產(chǎn)工藝研究[D];陜西科技大學(xué);2014年
7 姚向榮;燕麥屬3種進(jìn)境檢疫性雜草的風(fēng)險研究[D];福建農(nóng)林大學(xué);2008年
8 俞曉峰;內(nèi)蒙古塞寶燕麥?zhǔn)称酚邢薰景l(fā)展戰(zhàn)略研究[D];內(nèi)蒙古大學(xué);2014年
9 毛明艷;不同燕麥基因型耐鹽堿能力比較研究[D];河北農(nóng)業(yè)大學(xué);2009年
10 盧艷麗;燕麥與不同作物混作抗鹽堿生理特性的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2008年
,本文編號:1347249
本文鏈接:http://www.sikaile.net/shoufeilunwen/gckjbs/1347249.html