天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于車載三維激光掃描數(shù)據(jù)的分類與建筑物提取

發(fā)布時間:2019-05-22 17:41
【摘要】:近年來城市三維空間信息的獲取與應(yīng)用發(fā)展日益成熟,已被廣泛應(yīng)用于城市建設(shè)與規(guī)劃中。車載激光掃描系統(tǒng)可快速、自動、連續(xù)獲取高精度的三維空間數(shù)據(jù),作為一種新的數(shù)據(jù)獲取手段被逐漸應(yīng)用于地理信息產(chǎn)業(yè)中。車載掃描系統(tǒng)在獲取數(shù)據(jù)時,可近距離獲取城市街區(qū)中多種地物的三維空間信息。而在城市建設(shè)中,建筑物貫穿著整個城市,將車載激光掃描系統(tǒng)獲取的建筑物點云數(shù)據(jù)進(jìn)行快速的分割與提取顯得尤為重要。本文對國內(nèi)外研究現(xiàn)狀進(jìn)行了總結(jié),介紹了車載掃描系統(tǒng)的構(gòu)成和工作原理,介紹了點云數(shù)據(jù)的采集過程及點云數(shù)據(jù)的處理流程,總結(jié)了其他學(xué)者基于激光掃描數(shù)據(jù)所采用的分類方法,通過總結(jié)對比選取了本文方法。本文采取基于殘差分析與區(qū)域生長的方法對點云數(shù)據(jù)分別進(jìn)行了粗分類和細(xì)分類。首先本文在粗分類過程運(yùn)用局部鄰域法向量和基于平面擬合殘差的平整度屬性,將點云分割成不同區(qū)域如建筑物、地表、電桿、植被等。在進(jìn)行細(xì)分類時利用建筑物的平面屬性,將建筑物點云分類成不同的細(xì)節(jié)區(qū)域,如窗戶、門、墻體等。在細(xì)節(jié)分類中進(jìn)一步提取建筑的細(xì)節(jié)成分時,局部區(qū)域擬合殘差用來決定一個點是否在一個平面區(qū)域內(nèi),法向量夾角來決定鄰域點的相似程度。通過計算兩個參數(shù)θ和St來限制區(qū)域生長過程,在生長過程中能通過St值來剔除噪聲點,以達(dá)到分類效果。本文的分類方法在分類過程中不但能將建筑物中的細(xì)節(jié)部分進(jìn)行提取,還能對噪聲點有一定的識別能力,減少內(nèi)存空間。對平面和非平面的點云數(shù)據(jù)有一定的提取效果。
[Abstract]:In recent years, the acquisition and application of urban three-dimensional spatial information has become more and more mature, and has been widely used in urban construction and planning. The vehicle laser scanning system can obtain high precision 3D spatial data quickly, automatically and continuously. As a new means of data acquisition, it has been gradually applied to the geographic information industry. When the vehicle scanning system acquires the data, it can obtain the three-dimensional spatial information of many kinds of ground objects in the city block at close range. In the urban construction, the building runs through the whole city, so it is particularly important to segment and extract the building point cloud data obtained by the vehicle laser scanning system quickly. This paper summarizes the research status at home and abroad, introduces the structure and working principle of the vehicle scanning system, and introduces the acquisition process of point cloud data and the processing flow of point cloud data. The classification methods adopted by other scholars based on laser scanning data are summarized, and the methods in this paper are selected by summary and comparison. In this paper, the rough classification and subdivision of point cloud data are carried out based on residual analysis and regional growth. Firstly, in the rough classification process, the local neighborhood normal vector and the smoothness attribute based on plane fitting residual are used to divide the point cloud into different areas such as buildings, surface, pole, vegetation and so on. The point clouds of buildings are classified into different detail areas, such as windows, doors, walls and so on, by using the plane properties of buildings. When the detail components of the building are further extracted from the detail classification, the local area fitting residual is used to determine whether a point is in a plane region or not, and the angle of the normal vector determines the similarity degree of the neighborhood points. By calculating two parameters theta and St to limit the growth process of the region, the noise points can be eliminated by St value in the process of growth, so as to achieve the classification effect. In the process of classification, the classification method in this paper can not only extract the details of the building, but also have a certain ability to recognize the noise points and reduce the memory space. It has a certain extraction effect on planar and non-planar point cloud data.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P225.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳朋;譚曄汶;李亮;;地面三維激光掃描建筑物點云特征線提取[J];激光雜志;2016年03期

2 吳君涵;余柏蒗;彭晨;吳賓;虞思逸;黃益修;吳健平;;基于移動激光掃描點云數(shù)據(jù)和遙感圖像的建筑物三維模型快速建模方法[J];測繪與空間地理信息;2016年01期

3 閻躍觀;郭長輝;車通;郭園園;王九韜;;基于點云數(shù)據(jù)特征點拼接的建筑物三維重構(gòu)[J];礦山測量;2014年03期

4 胡雨佳;;車載激光掃描技術(shù)研究與應(yīng)用現(xiàn)狀[J];中小企業(yè)管理與科技(下旬刊);2014年03期

5 曹爽;岳建平;馬文;;基于特征選擇的雙邊濾波點云去噪算法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2013年S2期

6 袁占良;張彥;葛小三;;基于三維激光掃描技術(shù)的開采下沉盆地可視化研究[J];中州煤炭;2013年07期

7 劉亞文;龐世燕;左志奇;;蟻群算法的建筑立面點云數(shù)據(jù)提取[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2012年11期

8 張迪;鐘若飛;李廣偉;趙坤;;車載激光掃描系統(tǒng)的三維數(shù)據(jù)獲取及應(yīng)用[J];地理空間信息;2012年01期

9 楊必勝;魏征;李清泉;毛慶洲;;面向車載激光掃描點云快速分類的點云特征圖像生成方法[J];測繪學(xué)報;2010年05期

10 楊洋;馬一薇;楊靖宇;;基于車載激光掃描數(shù)據(jù)的窗戶提取與重建技術(shù)[J];海洋測繪;2010年03期

相關(guān)博士學(xué)位論文 前2條

1 馮義從;車載LiDAR點云的建筑物立面信息快速自動提取[D];西南交通大學(xué);2014年

2 喻亮;基于車載激光掃描數(shù)據(jù)的地物分類和快速建模技術(shù)研究[D];武漢大學(xué);2011年

相關(guān)碩士學(xué)位論文 前8條

1 唐云龍;基于車載激光點云數(shù)據(jù)的典型地物分類與提取[D];北京工業(yè)大學(xué);2015年

2 蔡志敏;基于點云數(shù)據(jù)的精簡算法研究[D];北京建筑大學(xué);2014年

3 楊璐t,

本文編號:2483113


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/shoufeilunwen/benkebiyelunwen/2483113.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶03018***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com